47 research outputs found

    Cross-relation Cross-bag Attention for Distantly-supervised Relation Extraction

    Full text link
    Distant supervision leverages knowledge bases to automatically label instances, thus allowing us to train relation extractor without human annotations. However, the generated training data typically contain massive noise, and may result in poor performances with the vanilla supervised learning. In this paper, we propose to conduct multi-instance learning with a novel Cross-relation Cross-bag Selective Attention (C2^2SA), which leads to noise-robust training for distant supervised relation extractor. Specifically, we employ the sentence-level selective attention to reduce the effect of noisy or mismatched sentences, while the correlation among relations were captured to improve the quality of attention weights. Moreover, instead of treating all entity-pairs equally, we try to pay more attention to entity-pairs with a higher quality. Similarly, we adopt the selective attention mechanism to achieve this goal. Experiments with two types of relation extractor demonstrate the superiority of the proposed approach over the state-of-the-art, while further ablation studies verify our intuitions and demonstrate the effectiveness of our proposed two techniques.Comment: AAAI 201

    Poopćena metoda razvoja po jacobijevim eliptičkim funkcijama i primjene na nelinearne valne jednadžbe

    Get PDF
    In this work an extended Jacobian elliptic function expansion method is applied to construct the exact periodic solutions of two nonlinear wave equations. The periodic solutions obtained by this method can be reduced to the solitary wave solutions under certain limiting conditions.Primijenili smo proširenu metodu razvoja po Jacobijevim eliptičkim funkcijama za izvod točnih periodičnih rješenja dviju nelinearnih valnih jednadžbi. Periodična rješenja koja smo izveli tom metodom svode se na solitonska rješenja u određenim graničnim uvjetima

    SynBody: Synthetic Dataset with Layered Human Models for 3D Human Perception and Modeling

    Full text link
    Synthetic data has emerged as a promising source for 3D human research as it offers low-cost access to large-scale human datasets. To advance the diversity and annotation quality of human models, we introduce a new synthetic dataset, SynBody, with three appealing features: 1) a clothed parametric human model that can generate a diverse range of subjects; 2) the layered human representation that naturally offers high-quality 3D annotations to support multiple tasks; 3) a scalable system for producing realistic data to facilitate real-world tasks. The dataset comprises 1.2M images with corresponding accurate 3D annotations, covering 10,000 human body models, 1,187 actions, and various viewpoints. The dataset includes two subsets for human pose and shape estimation as well as human neural rendering. Extensive experiments on SynBody indicate that it substantially enhances both SMPL and SMPL-X estimation. Furthermore, the incorporation of layered annotations offers a valuable training resource for investigating the Human Neural Radiance Fields (NeRF).Comment: Accepted by ICCV 2023. Project webpage: https://synbody.github.io

    A sequential learning model with GNN for EEG-EMG-based stroke rehabilitation BCI

    Get PDF
    IntroductionBrain-computer interfaces (BCIs) have the potential in providing neurofeedback for stroke patients to improve motor rehabilitation. However, current BCIs often only detect general motor intentions and lack the precise information needed for complex movement execution, mainly due to insufficient movement execution features in EEG signals.MethodsThis paper presents a sequential learning model incorporating a Graph Isomorphic Network (GIN) that processes a sequence of graph-structured data derived from EEG and EMG signals. Movement data are divided into sub-actions and predicted separately by the model, generating a sequential motor encoding that reflects the sequential features of the movements. Through time-based ensemble learning, the proposed method achieves more accurate prediction results and execution quality scores for each movement.ResultsA classification accuracy of 88.89% is achieved on an EEG-EMG synchronized dataset for push and pull movements, significantly outperforming the benchmark method's performance of 73.23%.DiscussionThis approach can be used to develop a hybrid EEG-EMG brain-computer interface to provide patients with more accurate neural feedback to aid their recovery

    Subject-independent EEG classification based on a hybrid neural network

    Get PDF
    A brain-computer interface (BCI) based on the electroencephalograph (EEG) signal is a novel technology that provides a direct pathway between human brain and outside world. For a traditional subject-dependent BCI system, a calibration procedure is required to collect sufficient data to build a subject-specific adaptation model, which can be a huge challenge for stroke patients. In contrast, subject-independent BCI which can shorten or even eliminate the pre-calibration is more time-saving and meets the requirements of new users for quick access to the BCI. In this paper, we design a novel fusion neural network EEG classification framework that uses a specially designed generative adversarial network (GAN), called a filter bank GAN (FBGAN), to acquire high-quality EEG data for augmentation and a proposed discriminative feature network for motor imagery (MI) task recognition. Specifically, multiple sub-bands of MI EEG are first filtered using a filter bank approach, then sparse common spatial pattern (CSP) features are extracted from multiple bands of filtered EEG data, which constrains the GAN to maintain more spatial features of the EEG signal, and finally we design a convolutional recurrent network classification method with discriminative features (CRNN-DF) to recognize MI tasks based on the idea of feature enhancement. The hybrid neural network proposed in this study achieves an average classification accuracy of 72.74 ± 10.44% (mean ± std) in four-class tasks of BCI IV-2a, which is 4.77% higher than the state-of-the-art subject-independent classification method. A promising approach is provided to facilitate the practical application of BCI

    Digital Life Project: Autonomous 3D Characters with Social Intelligence

    Full text link
    In this work, we present Digital Life Project, a framework utilizing language as the universal medium to build autonomous 3D characters, who are capable of engaging in social interactions and expressing with articulated body motions, thereby simulating life in a digital environment. Our framework comprises two primary components: 1) SocioMind: a meticulously crafted digital brain that models personalities with systematic few-shot exemplars, incorporates a reflection process based on psychology principles, and emulates autonomy by initiating dialogue topics; 2) MoMat-MoGen: a text-driven motion synthesis paradigm for controlling the character's digital body. It integrates motion matching, a proven industry technique to ensure motion quality, with cutting-edge advancements in motion generation for diversity. Extensive experiments demonstrate that each module achieves state-of-the-art performance in its respective domain. Collectively, they enable virtual characters to initiate and sustain dialogues autonomously, while evolving their socio-psychological states. Concurrently, these characters can perform contextually relevant bodily movements. Additionally, a motion captioning module further allows the virtual character to recognize and appropriately respond to human players' actions. Homepage: https://digital-life-project.com/Comment: Homepage: https://digital-life-project.com

    Structural Correspondence Learning for Cross-Lingual Sentiment Classification with One-to-Many Mappings

    No full text
    Structural correspondence learning (SCL) is an effective method for cross-lingual sentiment classification. This approach uses unlabeled documents along with a word translation oracle to automatically induce task specific, cross-lingual correspondences. It transfers knowledge through identifying important features, i.e., pivot features. For simplicity, however, it assumes that the word translation oracle maps each pivot feature in source language to exactly only one word in target language. This one-to-one mapping between words in different languages is too strict. Also the context is not considered at all. In this paper, we propose a cross-lingual SCL based on distributed representation of words; it can learn meaningful one-to-many mappings for pivot words using large amounts of monolingual data and a small dictionary. We conduct experiments on NLP&CC 2013 cross-lingual sentiment analysis dataset, employing English as source language, and Chinese as target language. Our method does not rely on the parallel corpora and the experimental results show that our approach is more competitive than the state-of-the-art methods in cross-lingual sentiment classification

    Role of Charge Density Wave in Monatomic Assembly in Transition Metal Dichalcogenides

    Get PDF
    The charge density wave (CDW) in transition metal dichalcogenides (TMDs) has drawn tremendous interest due to its potential for tailoring their surface electronic and chemical properties. Due to technical challenges, however, how the CDW could modulate the chemical behavior of TMDs is still not clear. Here, this work presents a study of applying the CDW of NbTe 2 , with a high transition temperature above room temperature, to generate the assembling adsorption of Sn adatoms on the surface. It is shown that highly ordered monatomic Sn adatoms with a quasi-1D structure can be obtained under regulation by the single-axis CDW of the substrate. In addition, the CDW modulated superlattices could in turn change the surface electronic properties from semimetallic to metallic. These results demonstrate an effective approach for tuning the surface chemical properties of TMDs by their CDWs, which could be applied in exploring them for various practical applications, such as heterogeneous catalysis, epitaxial growth of low-dimensional materials, and future nanoelectronics
    corecore