30 research outputs found

    Bank Credit Strategy Model Based on AHP-Fuzzy Comprehensive Evaluation

    Get PDF
    Credit risk control and credit strategy formulation of medium and micro enterprises have always been important strategic issues faced by commercial banks. Banks usually make corporate loan policies based on the credit degree, the information of trading bills and the relationship of supply-demand chain of the enterprise. In this paper, we established the AHP-Fuzzy comprehensive evaluation model for quantifying enterprise credit risk. Based on the relevant data of 123 enterprises with credit records, the credit strategy is formulated according to the three indicators of enterprise strength, enterprise reputation and stability of supply-demand relationship. This paper also combines the credit reputation, credit risk and supply and demand stability rating in order to establish the bank credit strategic planning model to decide whether to lend or not and the lending order. The conclusion shows that, under the condition of constant total loan amount, the enterprises with the highest credit rating should be given priority. Then, combined with the change of customer turnover rate with interest rate, we take the bank's maximize expected income as objective to calculate the optimal loan interest rate of different customer groups

    Comparative analysis of the intestinal microbiota of black−necked cranes (Grus nigricollis) in different wintering areas

    Get PDF
    Fecal microbiota is essential for host health because it increases digestive effectiveness. The crane species Grus nigricollis (G. nigricollis) is considered to be near threatened. The fecal microbial composition of crane is less understood, particularly in the Tibet, China. This study was performed to investigate the differences in fecal microbial composition and diversity of crane in different wintering areas using third-generation single-molecule real-time sequencing technology in the Tibet, China. According to the findings, 20 samples were used to generate 936 bacterial amplicon sequence variants (ASVs) and 1,800 fungal ASVs, only 4 bacterial ASVs and 20 fungal ASVs were shared in four distinct locations. Firmicutes were the dominant bacterial phylum in all samples, and Ascomycota and Basidiomycota were the dominant fungal phylum. At the genus level, Lactobacillus was the dominant genus in Linzhi City (LZ), Shannan City (SN), and Lasa City (LS), whereas Megamonas was the dominant genus in Rikaze City (RKZ). Naganishia and Mycosphaerella were the dominant fungal genera in SN and RKZ. Mycosphaerella and Tausonia were the dominant fungal genera in LZ. Naganishia and Fusarium were the dominant fungal genera in LS. And the fecal microbial composition varied between the four groups, as shown by the underweighted pair-group method with arithmetic means and principal coordinates analysis. This study offers a theoretical basis for understanding the fecal microbial composition of crane

    An immunological electrospun scaffold for tumor cell killing and healthy tissue regeneration

    Get PDF
    Antibody-based cancer immune therapy has attracted lots of research interest in recent years; however, it is greatly limited by the easy distribution and burst release of antibodies. In addition, after the clearance of the tissue, healthy tissue regeneration is another challenge for cancer treatment. Herein, we have developed a specific immunological tissue engineering scaffold using the agonistic mouse anti-human CD40 antibody (CD40mAb) incorporated into poly(l-lactide) (PLLA) electrospun fibers through the dopamine (PDA) motif (PLLA-PDA-CD40mAb). CD40mAb is successfully incorporated onto the surface of the electrospun fibrous scaffold, which is proved by immunofluorescence staining, and the PLLA-PDA-CD40mAb scaffold has an anti-tumor effect by locally releasing CD40mAb. Therefore, this immunological electrospun scaffold has very good potential to be developed as a powerful tool for localized tumor treatment, and this is the first to be reported in this area.Peer reviewe

    An immunological electrospun scaffold for tumor cell killing and healthy tissue regeneration

    Get PDF
    Antibody-based cancer immune therapy has attracted lots of research interest in recent years; however, it is greatly limited by the easy distribution and burst release of antibodies. In addition, after the clearance of the tissue, healthy tissue regeneration is another challenge for cancer treatment. Herein, we have developed a specific immunological tissue engineering scaffold using the agonistic mouse anti-human CD40 antibody (CD40mAb) incorporated into poly(l-lactide) (PLLA) electrospun fibers through the dopamine (PDA) motif (PLLA-PDA-CD40mAb). CD40mAb is successfully incorporated onto the surface of the electrospun fibrous scaffold, which is proved by immunofluorescence staining, and the PLLA-PDA-CD40mAb scaffold has an anti-tumor effect by locally releasing CD40mAb. Therefore, this immunological electrospun scaffold has very good potential to be developed as a powerful tool for localized tumor treatment, and this is the first to be reported in this area

    Methylprednisolone as Adjunct to Endovascular Thrombectomy for Large-Vessel Occlusion Stroke

    Get PDF
    Importance It is uncertain whether intravenous methylprednisolone improves outcomes for patients with acute ischemic stroke due to large-vessel occlusion (LVO) undergoing endovascular thrombectomy. Objective To assess the efficacy and adverse events of adjunctive intravenous low-dose methylprednisolone to endovascular thrombectomy for acute ischemic stroke secondary to LVO. Design, Setting, and Participants This investigator-initiated, randomized, double-blind, placebo-controlled trial was implemented at 82 hospitals in China, enrolling 1680 patients with stroke and proximal intracranial LVO presenting within 24 hours of time last known to be well. Recruitment took place between February 9, 2022, and June 30, 2023, with a final follow-up on September 30, 2023.InterventionsEligible patients were randomly assigned to intravenous methylprednisolone (n = 839) at 2 mg/kg/d or placebo (n = 841) for 3 days adjunctive to endovascular thrombectomy. Main Outcomes and Measures The primary efficacy outcome was disability level at 90 days as measured by the overall distribution of the modified Rankin Scale scores (range, 0 [no symptoms] to 6 [death]). The primary safety outcomes included mortality at 90 days and the incidence of symptomatic intracranial hemorrhage within 48 hours. Results Among 1680 patients randomized (median age, 69 years; 727 female [43.3%]), 1673 (99.6%) completed the trial. The median 90-day modified Rankin Scale score was 3 (IQR, 1-5) in the methylprednisolone group vs 3 (IQR, 1-6) in the placebo group (adjusted generalized odds ratio for a lower level of disability, 1.10 [95% CI, 0.96-1.25]; P = .17). In the methylprednisolone group, there was a lower mortality rate (23.2% vs 28.5%; adjusted risk ratio, 0.84 [95% CI, 0.71-0.98]; P = .03) and a lower rate of symptomatic intracranial hemorrhage (8.6% vs 11.7%; adjusted risk ratio, 0.74 [95% CI, 0.55-0.99]; P = .04) compared with placebo. Conclusions and Relevance Among patients with acute ischemic stroke due to LVO undergoing endovascular thrombectomy, adjunctive methylprednisolone added to endovascular thrombectomy did not significantly improve the degree of overall disability.Trial RegistrationChiCTR.org.cn Identifier: ChiCTR210005172

    Fleet Deployment Optimization for LNG Shipping Vessels Considering the Influence of Mixed Factors

    No full text
    Driven by China’s booming natural gas consumption market, LNG (Liquified Natural Gas) shipping import has grown rapidly. To facilitate scientific and efficient decision making on LNG shipping fleet deployment and the development of the LNG shipping industry, this article proposes an optimization model to minimize annual fleet operating costs, including voyage cost, running cost, and capital cost. Under the consideration of the mixed factors of self-owned and time charter vessels, epidemic prevention and control, port congestion, transportation time cost, and evaporation loss, as well as navigation security and emergency situations, the validity and optimality of the model are demonstrated by the empirical example and the cost comparison between the conventional and optimized solution. The results show that this optimization model can reduce the total cost by 9.87%. Then, through sensitivity analysis, various significant factors affecting the operating costs of LNG shipping enterprises and their degrees of influence are determined. Based on the analysis of the relevant causes, some actionable countermeasures are recommended, including establishing a shipping price reciprocity mechanism and full chain investment planning, optimizing the inbound link to reduce invalid berthing time, strengthening the construction competitiveness and economy of scale of larger LNG ships, and building a combined dual resource pool transportation mode. This paper contributes to improving transregional maritime energy transport and management capacity, while further enhancing the energy security and development of port cities and their economic hinterlands

    Metal Halide Perovskite/Electrode Contacts in Charge‐Transporting‐Layer‐Free Devices

    No full text
    Abstract Metal halide perovskites have drawn substantial interest in optoelectronic devices in the past decade. Perovskite/electrode contacts are crucial for constructing high‐performance charge‐transporting‐layer‐free perovskite devices, such as solar cells, field‐effect transistors, artificial synapses, memories, etc. Many studies have evidenced that the perovskite layer can directly contact the electrodes, showing abundant physicochemical, electronic, and photoelectric properties in charge‐transporting‐layer‐free perovskite devices. Meanwhile, for perovskite/metal contacts, some critical interfacial physical and chemical processes are reported, including band bending, interface dipoles, metal halogenation, and perovskite decomposition induced by metal electrodes. Thus, a systematic summary of the role of metal halide perovskite/electrode contacts on device performance is essential. This review summarizes and discusses charge carrier dynamics, electronic band engineering, electrode corrosion, electrochemical metallization and dissolution, perovskite decomposition, and interface engineering in perovskite/electrode contacts‐based electronic devices for a comprehensive understanding of the contacts. The physicochemical, electronic, and morphological properties of various perovskite/electrode contacts, as well as relevant engineering techniques, are presented. Finally, the current challenges are analyzed, and appropriate recommendations are put forward. It can be expected that further research will lead to significant breakthroughs in their application and promote reforms and innovations in future solid‐state physics and materials science

    Peniginsengins B–E, New Farnesylcyclohexenones from the Deep Sea-Derived Fungus Penicillium sp. YPGA11

    No full text
    Chemical examination of the EtOAc extract of the deep sea-derived fungus Penicillium sp. YPGA11 resulted in the isolation of four new farnesylcyclohexenones, peniginsengins B–E (1–4), and a known analog peniginsengin A (5). The structures of compounds 1–4 were determined on the basis of comprehensive analyses of the nuclear magnetic resonance (NMR) and mass spectroscopy (MS) data, and the absolute configurations of 1, 2, and 4 were determined by comparisons of experimental electronic circular dichroism (ECD) with calculated ECD spectra. Compounds 1–5, characterized by a highly oxygenated 1-methylcyclohexene unit and a (4E,8E)-4,8-dimethyldeca-4,8-dienoic acid side chain, are rarely found in nature. Compounds 2–4 exhibited antibacterial activity against Staphylococcus aureus
    corecore