2,558 research outputs found

    Indium substitution effect on the topological crystalline insulator family (Pb1βˆ’x_{1-x}Snx_{x})1βˆ’y_{1-y}Iny_{y}Te: Topological and superconducting properties

    Full text link
    Topological crystalline insulators (TCIs) have been of great interest in the area of condensed matter physics. We investigated the effect of indium substitution on the crystal structure and transport properties in the TCI system (Pb1βˆ’x_{1-x}Snx_{x})1βˆ’y_{1-y}Iny_{y}Te. For samples with a tin concentration x≀50%x\le50\%, the low-temperature resisitivities show a dramatic variation as a function of indium concentration: with up to ~2% indium doping the samples show weak-metallic behavior, similar to their parent compounds; with ~6% indium doping, samples have true bulk-insulating resistivity and present evidence for nontrivial topological surface states; with higher indium doping levels, superconductivity was observed, with a transition temperature, Tc, positively correlated to the indium concentration and reaching as high as 4.7 K. We address this issue from the view of bulk electronic structure modified by the indium-induced impurity level that pins the Fermi level. The current work summarizes the indium substitution effect on (Pb,Sn)Te, and discusses the topological and superconducting aspects, which can be provide guidance for future studies on this and related systems.Comment: 16 pages, 8 figure

    Monte Carlo study of thermal fluctuations and Fermi-arc formation in d-wave superconductors

    Get PDF
    From the perspective of thermal fluctuations, we investigate the pseudogap phenomena in underdoped high-temperature curpate superconductors. We present a local update Monte Carlo procedure based on the Green's function method to sample the fluctuating pairing field. The Chebyshev polynomial method is applied to calculate the single-particle spectral function directly and efficiently. The evolution of Fermi arcs as a function of temperature is studied by examining the spectral function at Fermi energy as well as the loss of spectral weight. Our results signify the importance of the vortex-like phase fluctuation on the formation of Fermi arcs.Comment: 9 pages, 3 figures. Figures redraw

    Optimization for heat and sound insulation of honeycomb sandwich panel in thermal environments

    Get PDF
    An optimization based on sequential quadratic programming (SQP) algorithm to increase the thermal insulation and sound transmission loss of honeycomb panel in thermal environments is presented. First, heat transfer analysis is performed to reveal the steady-state thermal performance of hexagonal aluminum honeycomb sandwich panel, by using the semi-empirical Swann and Pittman formula. Next, the influences of temperature on acoustic performance of honeycomb panel based on statistical energy analysis method (SEA) is performed. Results show that increasing the thickness of the honeycomb core can improve the acoustic performance and heat insulation behavior
    • …
    corecore