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From the perspective of thermal fluctuations, we investigate the pseudogap phenomena in underdoped
high-temperature curpate superconductors. We present a local update Monte Carlo procedure based on the
Green’s function method to sample the fluctuating pairing field. The Chebyshev polynomial method is applied to
calculate the single-particle spectral function directly and efficiently. The evolution of Fermi arcs as a function of
temperature is studied by examining the spectral function at Fermi energy as well as the loss of spectral weight.
Our results signify the importance of the vortexlike phase fluctuations on the formation of Fermi arcs.
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I. INTRODUCTION

The mysterious pseudogap (PG) phase is one of the
most fascinating aspects of the underdoped high-temperature
curpate superconductors (HTCS). By a variety of probes
the pseudogap (the suppression of the low-energy single-
particle spectral weight) has been observed to persist from
above the superconducting (SC) critical temperature Tc to
T ∗ in the underdoped regime. The direct evidences of this
spectral gap come from the angle-resolved photoemission
spectroscopy (ARPES).1–3 Ding et al.1 studied the un-
derdoped Bi2Sr2CaCu2O8+δ using ARPES and found that
a pseudogap with d-wave symmetry begins to open up
for T < T ∗ and develops smoothly into the d-wave SC
gap below Tc. One peculiar property of the pseudogap
phase revealed by further experimental investigation is the
truncated Fermi surface termed as Fermi arcs,4 exhibit-
ing distinct difference from the pointlike (four gap nodes)
Fermi surface for T well below Tc as expected for a pure
d-wave superconductor and the closed Fermi surface for T

above T ∗.
There are two basic scenarios of the PG phase. The first one

attributes the opening of the pseudogap to the presence of an
exotic order competing with the SC phase, such as the spin5,6

and/or charge7 density waves and so on. The second scenario
associates the PG phase with the phase-incoherent pairing
and therefore the pseudogap is interpreted as a precursor of
the SC order. In this preformed-pair scenario there are two
energy scales: one is the BCS energy gap � which is closely
related to the binding energy of the electron pair, and the
other is the phase-stiffness energy scale Tθ which protects
the phase coherence. For the conventional superconductors
Tθ is larger than � so the SC state is destroyed by pair
breaking. However, for the underdoped HTCS, because of
the low carrier density and the short correlation length,
� is larger than Tθ ,8 and therefore the phase coherence
is destroyed while the energy gap survives as temperature
increases across Tc. In this context Tc is determined by Tθ and
the pseudogap is caused by the pair fluctuations.8–18 Franz
and Millis13 showed that random supercurrent induced by
thermal phase fluctuations can cause the shift of electronic
spectral weight in both momentum and energy. Berg and

Altman14 further attributed the emergence of the Fermi arc
to the pileup of the low-energy spectral weight along the
underlying Fermi surface due to the Doppler-shift effect of
the fluctuating supercurrent. This picture of phase fluctuations
is concise and instructive, yet the analytical results relied
on the semiclassical approximation13 where only far-field
effect of the vortex-type excitations is considered, which
might be uncontrolled as argued in Ref. 16. Furthermore,
the probability distribution of the fluctuating supercurrent
was assumed phenomenologically to be Gaussian type. Re-
cently we17,18 attempted to go beyond the semiclassical
approximation by employing a 2D XY model to simulate
the vortex-type phase fluctuations and numerically taking
both the Doppler effect of the whirling supercurrent and
the scattering effect of vortices as topological singularities
into full consideration. However, the XY model is still
a phenomenological description of the phase fluctuations,
which includes a temperature-independent phase-stiffness
constant J .

In this work, we start from a 2D attractive Hubbard
model with only nearest-neighbor interactions to investi-
gate the pseudogap phase and the evolution of Fermi arcs
in d-wave superconductors. The path-integral formalism is
employed where pairing fluctuations are inherently embed-
ded. A local-update Monte Carlo scheme on the basis of
the Green’s function method is presented to speed up the
random walk in the classical configuration space of pair-
ing field. Superfluid density is calculated as the signature
of the SC phase transition and compared with the phase
correlation function.12 The single-electron spectral func-
tion is calculated using Chebyshev polynomial method.17–20

The temperature dependence of Fermi-arc length is dis-
cussed.

The paper is organized as follows: In Sec. II we describe
the basic path-integral formalism to treat the 2D extended
Hubbard model. The local-update algorithm based on Green’s
function theory and the Chebyshev expansion approach
are presented. In Sec. III, we calculate the temperature
dependencies of various quantities relevant to the phase
fluctuations and pseudogap phase. The conclusion is given
in Sec. IV.
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II. THE MODEL AND FORMALISM

The BCS Hamiltonian ĤBCS we adopt is given by:

ĤBCS = −t
∑
i,δ,σ

c
†
iσ ci+δσ − t ′

∑
i,δ′,σ

c
†
iσ ci+δ′σ

−V
∑
i,δ

c
†
i↑ci↑c

†
i+δ↓ci+δ↓ − μ

∑
i,σ

ni,σ , (1)

where σ denotes spin, i is the index of site of the two-
dimensional L × L square lattice, i + δ and i + δ′ denote the
nearest-neighboring (NN) and next-NN sites of i, respectively,
and t and t ′ are the NN and next-NN hopping integrals,
respectively. μ is the chemical potential. The attractive
interaction V > 0 between electrons on the NN sites favors
unconventional superconducting phases. To investigate the
effect of superconducting fluctuations, the quantum partition
function is expressed in the path integral formalism21,22:

Z =
∫

D{ϕiσ (τ ),ϕ̄iσ (τ )} exp(−S), (2)

where the action S is expressed as

S(ϕ,ϕ̄) =
∫ β

0
dτ

[ ∑
iσ

ϕ̄iσ (τ )(∂τ − μ)ϕiσ (τ )

−
∑
i,j,σ

tij ϕ̄iσ (τ )ϕjσ (τ )

−V
∑
i,δ

ϕ̄i↑(τ )ϕ̄i+δ↓(τ )ϕi+δ↓(τ )ϕi↑(τ )

]
, (3)

where ϕiσ and ϕ̄iσ denote Grassmann fields and β = 1/kBT .
We then decouple the quartic term in the action by intro-
ducing an auxiliary Hubbard-Stratonovich field �i,i+δ(τ ) in
the Cooper channel. For a square lattice with N sites and
periodic boundary condition, there are totally 2N (N = L2)
independent �i,i+δ(τ )’s. Hereafter we use � to denote the set
{�i,i+δ(τ )}. The partition function now becomes

Z =
∫

D�D�̄e−β
(�,�̄), (4)

where∫
D�D�̄ ≡

∫ N∏
i=1

∏
δ=x̂,ŷ

d�i,i+δ(τ )d�̄i,i+δ(τ ). (5)

In Eq. (4), the grand potential is expressed as


(�,�̄) = 
f (�,�̄) + V −1
∑
i,δ

|�i,i+δ(τ )|2, (6)

where 
f denotes the fermionic thermodynamic potential


f (�,�̄) = −β−1 ln Tre−βĤBdG(�). (7)

Here the BdG Hamiltonian is written by

ĤBdG(�) = �†H̃BdG(�)�

=
N∑

i,j=1

(c†i↑,ci↓)

(
−ti,j �i,j

�∗
i,j ti,j

)(
cj↑
c
†
j↓

)
, (8)

where �†(�) denotes the Nambu creation (annihilation) op-
erator defined as �† = (c†1↑,c1↓,c

†
2↑,c2↓, · · · ,c†N↑,cN↓). H̃BdG

is a 2N × 2N Hermitian matrix which will be called BdG
matrix. Hereafter we use capital letters with a tilde(˜) to denote
2N × 2N dimensional matrices (e.g., the BdG matrix H̃BdG)
while a hat (ˆ ) to denote operators in second quantization (e.g.,
the BdG Hamiltonian ĤBdG). For the sake of convenience, we
will omit the argument � and simply use ĤBdG and H̃BdG to
denote the BdG Hamiltonian and matrix for a certain pairing
field �.

In the following, we will ignore the τ dependence of
�i,i+δ(τ ), i.e., the quantum fluctuation, and concentrate on
its thermal fluctuations expected to be dominant near Tc

especially in the high temperature pseudogap region. With this
approximation, ĤBdG actually describes the electrons moving
in a static but spatially fluctuating pairing field. Moreover
Eq. (4) becomes a classical partition function expressed as an
integration over the classical phase space formed by {�i,i+δ =
|�i,i+δ|eiφδ

i }, whose dimension is 4N for a N -site square
lattice. Such multidimensional integration can be performed
by the standard Monte Carlo method. To achieve this goal, one
need to obtain the probability distribution P (�) ∝ e−β
(�,�̄)

for a configuration �, or its change characterized by the ratio

P (�′)
P (�)

= e−β[
(�′,�̄′)−
(�,�̄)], (9)

for a possible change of configuration � → �′. The accep-
tance probability for such a change is given by

PA(�′ ← �) = min

[
1,

P (�′)
P (�)

]
(10)

according to the Metropolis algorithm. To obtain 
 especially
the nontrivial 
f , previous numerical work12 related it to
the eigenspectrum of the BdG matrix through the relation

f (�,�̄) = −β−1 ∑

n ln(1 + e−βεn ), where εn is the eigen-
value of the BdG equations,

∑
j

(
−tij �i,j

�∗
i,j t∗i,j

) (
u

j
n

v
j
n

)
= εn

(
ui

n

vi
n

)
. (11)

To solve this eigenvalue problem, one needs to diagonalize a
2N × 2N BdG matrix and the workload is O(N3) which is
quite time-consuming for large lattice.

In this paper, we will propose an alternative local-update
scheme based on the Green’s function method. The Gor’kov
Green’s function is employed, which is defined as:

G(iτ,jτ ′) = −T

〈
ci↑(τ )c†j↑(τ ′) ci↑(τ )cj↓(τ ′)

c
†
i↓(τ )c†j↑(τ ′) c

†
i↓(τ )cj↓(τ ′)

〉
, (12)

in terms of 2 × 2 Nambu matrix notation. Here 〈· · ·〉 =
Tr[· · · e−βĤBdG ]/Tr[e−βĤBdG ], and its Fourier transform with
respect to the imaginary time is

G(i,j ; iωk) =
∫ β

0
dτG(iτ,j0)eiωkτ , (13)

where ωk = 2πT (k + 1) the Matsubara frequencies. One can
easily find that the matrix form of the Gor’kov Green’s function
is actually the resolvent of the BdG matrix H̃BdG, i.e.,

G̃(iωk) = (iωkĨ − H̃BdG)−1, (14)
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where Ĩ the unity matrix. Combining this relation with
Eq. (11), we obtain the spectral representation of G̃(iωk),

G(i,j ; iωk) =
∑
εn

(
ui

n

vi
n

) (
u

j
n,v

j
n

)∗

iωk − εn

(15)

which is a 2 × 2 matrix. Before starting our simulation, we
only need to diagonalize the BdG matrix with certain initial
(often random) configuration once for all. Then the eigen-
energies εn and eigenfunctions un and vn are used to calculate
the Green’s function according to Eq. (15). As we will show in
Sec. II A, we can always update the Gor’kov Green’s function
without having to diagonalize the BdG matrix any more as
long as the change of configuration is proposed locally.

A. Update of the Green’s function and calculation of the
acceptance probability

We assume a local change of the configuration, located
at the 1 and 2 sites without loss of generality, from �1,2 to
�′

1,2 = �1,2 + χ1,2. Then the BdG Hamiltonian becomes

Ĥ ′
BdG = ĤBdG + Ĥ1 (16)

Ĥ1 = χ1,2(c†1↑c
†
2↓ + c

†
2↑c

†
1↓) + H.c., (17)

where Ĥ1 denotes the corresponding change of the BdG
Hamiltonian. According to Eq. (14), we have

G̃′(iωn) = (iωkĨ − H̃BdG − H̃1)−1

= G̃(iωn)[1 − H̃1G̃(iωn)]−1, (18)

where H̃1 denotes the matrix form of Ĥ1 in the Nambu
representation as Eq.(8),

H̃1 =
⎛⎝ X4×4 0

− − − − − −
0 0

⎞⎠
2N×2N

, (19)

where only its upper-left-corner 4 × 4 block has nonzero
elements and X4×4 is

X4×4 =

⎛⎜⎜⎜⎝
0 0 0 χ1,2

0 0 χ∗
1,2 0

0 χ1,2 0 0

χ∗
1,2 0 0 0

⎞⎟⎟⎟⎠ . (20)

The inverse operation on the right-hand side of Eq. (18) can
be performed as follows:

(I − H̃1G̃)−1 =
[
I −

(
X 0

0 0

) (
A B

C D

)]−1

(21)

=
(

I − XA −XB

0 I

)−1

(22)

=
[

(I − XA)−1 (I − XA)−1XB

0 I

]
. (23)

In the above derivation, we use block matrices A,B,C,D

to denote G̃, whose dimension is 4 × 4, 4 × (2N − 4),

(2N − 4) × 4, and (2N − 4) × (2N − 4), respectively. As
most nonzero elements of the above matrix is concentrated
on the first four rows, one can update G̃′ according to Eq. (18)
with O(N2) computing operations.

Next, we will shown how to obtain the change of the
thermodynamic potential which determines the acceptance of
the proposed local update. According to textbook,23 one has


′
f − 
f =

∫ 1

0
dλ〈Ĥ1〉λ, (24)

where 〈· · ·〉λ = Tr[· · · e−βĤ (λ)]/Tr[e−βĤ (λ)] with Ĥ (λ) =
ĤBdG + λĤ1. The integrated function 〈Ĥ1〉λ are also related
with the Gor’kov Green’s function23:

〈Ĥ1〉λ = 2Re{χ12[Gλ(1τ,2τ+)21 + Gλ(2τ,1τ+)21]}
= 2Re

{
χ12T

∑
iωk

[Gλ(1,2; iωk)21 + Gλ(2,1; iωk)21]

}
(25)

Using Eq. (18) and (23), we have

Gλ(1,2; iωk)21 = [G(iωk)4×4(I − λXA)−1]2,3 (26)

Gλ(2,1; iωk)21 = [G(iωk)4×4(I − λXA)−1]4,1. (27)

Therefore, from Eqs. (25), (26), and (27), the integration over
λ in Eq. (24) is readily performed,∫ 1

0
(I − λXA)−1dλ

= −(XA)−1 ln(I − XA)

= −O

⎛⎜⎜⎜⎜⎝
ln(1−d1)

d1 0 0 0

0 ln(1−d2)
d2

0 0

0 0 ln(1−d3)
d3

0

0 0 0 ln(1−d4)
d4

⎞⎟⎟⎟⎟⎠ O−1,

(28)

where to treat the 4 × 4 matrix as an argument of logarithm
function in Eq. (28), we diagonalize XA = ODO−1 with O

the transformation matrix and D the diagonal matrix with
eigenvalues d1,2,3,4.

B. Spectral function and Chebyshev polynomial approach

With the help of the local-update scheme described above,
the classical phase space of � are sampled and thermodynamic
averages of physical quantities can be obtained. As an example,
we give the definition of the single-electron spectral function,

A(k,ω) =
∫

D�D�̄A�(k,ω)e−β
(�,�̄)∫
D�D�̄e−β
(�,�̄)

, (29)

where A�(k,ω) denotes the single-electron spectral function
for a certain configuration of �. A�(k,ω) can be derived
according to

A�(k,ω) = − 1

π
Im

∑
i,j

GR(i,j,ω)11e
ik·(i−j), (30)
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where the retarded Green’s function is the real-space represen-
tation of the resolvent,

GR(i,j,ω)11 = 〈i ↑ |(ω + i0+ − ĤBdG)−1|j ↑〉. (31)

Combining the above two equations, we have

A�(k,ω) = 〈k ↑ |δ(ω − ĤBdG)|k ↑〉, (32)

where |k ↑〉 = N−1/2 ∑
i e

ik·ic†i↑|0〉. Generally, one can first
solve the BdG equation (11), then employ the following
equation,

A�(k,ω) =
∑
εn,i,j

δ(ω − εn)ui
nu

j∗
n eik·(i−j) (33)

to calculate the spectral function for one configuration.
However, since the computational effort of full diagonalization
of the BdG matrix is O(N3), we will apply the Chebyshev
polynomial approach,18,19 which is O(MN ) with M � N2, to
cut the computational cost.

We perform a Chebyshev polynomial expansion

δ(x − y) = 1

π
√

1 − x2

[
μ0 + 2

∞∑
m=1

Tm(x)Tm(y)

]
, (34)

to handle the Dirac δ function. After substituting it into
Eq. (32), we have

A�(k,ω) = μ0 + 2
∑M

m=1 μmgmTm(ω/s)

π
√

1 − (ω/s)2
, (35)

where

μm = 〈k ↑ |Tm(ĤBdG/s)|k ↑〉, (36)

are Chebyshev moments. Here for numerical calculation,
the infinite series in Eq. (34) has to be truncated by M

as shown in Eq. (35) and to damp the consequential Gibbs
oscillations the Lorentz kernel gm is used in Eq. (35) with gm =
sinh[λ(1 − m/M)]/ sinh(λ), where λ is a free parameter of the
kernel and we choose λ = 4 throughout our calculation as a
compromise between good resolution and sufficient damping
of the Gibbs oscillations as suggested in Ref. 19. s denotes

(a)
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FIG. 1. (Color online) (Upper left panel) Superfluid density (SFD) and the long-range phase correlation function S(14,0) vs T for three
different interactions. (Black dot, ) SFD, V = 1.2; (green square, ) SFD, V = 2.4; (blue diamond, ) SFD, V = 4.0; (orange
down-triangle, ) S(14,0), V = 1.2; and (red triangle, ) S(14,0), V = 4.0. Tc is around 0.05, 0.09, and 0.105, respectively. (Upper
right panel) The d-wave vortex number nv vs T for three different interactions. For each interaction, there is a region that vortices gush
abruptly. Black dot (V = 1.2), red square (V = 2.4), and blue diamond (V = 4.0). (Lower row) Snap shots of the spatial distribution of the
magnitude and phase of the d-wave order parameter �d (i) on a 29 × 29 lattice (note the periodic boundary condition) at T = 0.06 (lower left)
and T = 0.12 (lower right). The phase on each lattice site is represented by a blue arrow, while the magnitude is represented by the size of the
arrow as well as the gray-scale density. Also shown are the topological excitations with the red

⊙
denoting the vortex with winding number 1

and green
⊗

denoting the antivortex with winding number −1.
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the scaling factor ensuring the spectrum of ĤBdG/s falling
into the interval [−1,1], i.e., the domain of the Chebyshev
polynomials.

Most computational effort is spent in the calculation of
the Chebyshev moments μm according to Eq. (36), which
reduces to sparse matrix-vector multiplications after taking
advantage of the recursion relation Tm(x) = 2xTm−1(x) −
Tm−2(x). Considering that the BdG Hamiltonian is sparse, the
cost of matrix-vector multiplication is an O(N ) process and
the calculation of M moments requires only O(MN ) compu-
tational operations. Further relations of the Chebyshev poly-
nomials T2m = 2T 2

m − 1 and T2m+1 = 2TmTm+1 − T1 enable
us to obtain two moments per matrix-vector multiplication.
Therefore, calculation of the single-particle spectral function
using the Chebyshev polynomial method is fast, efficient, and
direct with less memory consumption and superior to direct
diagonalization [generally O(N3)] of the BdG matrix.

III. NUMERICAL RESULTS

In our work, the parameters are chosen as below: t = 1 (as
the unit of energy), t ′ = −0.3, μ = −0.83, and N = L × L =
28 × 28. According to the above parameters the average
electron number is approximately 0.9 and accordingly the hole
doping is 0.1. For each temperature, the first 103 MC sweeps
are dropped to equilibrate the system; 103 configurations
are used as samples to get statistical average. Each MC
sweep includes 2N2 local updates to reduce the configuration
correlation. By these arguments, the statistical error reduces
to an acceptable level. We then calculate the spectral function
directly with the help of the Chebyshev polynomials19 with
the truncation M = 2048.

In Fig. 1(a), we show the superfluid density (SFD) Ds/πe2

(see Appendix) as a function of temperature for different
pairing interactions. The SFD decreases as the temperature
increases and displays an apparent drop indicating a phase
transition for the three interaction strengths, although SFD has
a long tail above the transition temperature due to the finite
size effect. By taking the leading-edge midpoint as Tc, we
have Tc ≈ 0.05,0.09,0.105 for V = 1.2,2.4,4, respectively.
Compared with the previous work,12 we find that the transition
temperature increases with the interaction strength at least for
V � 4. This increase of Tc with V for small to intermediate
value of V is further supported if we further examine
the long-range phase correlation12 S(L/2,0) = 1

N

∑N
i=1 <

eiφx̂
i e−iφx̂

i+(L/2,0) >, where φx̂
i denotes the phase of the pairing

field �(i,i + x̂). The results are also shown in Fig. 1(a),
indicating that both the SFD and S(L/2,0) are measures of
the phase stiffness of the condensate.

Conventionally, the phase fluctuation scenario relates the
normal to SC phase transition in underdoped HTCS to
the KT-type phase transition. Although people have made
lots of efforts, it is still unclear how this occurs. Gener-
ally, fluctuations of the phase degrees of freedom of the
superconducting order parameter can be described by the
2D XY model, the studies of which have revealed that the
proliferation and unbinding of the vortex-antivortex pairs
above TKT destroys the quasi-long-range phase coherence.
Here we explore this aspect by observing the vortex-type

excitations in the phase field ϕd (i) of the d-wave order
parameter �d (i) = |�d (i)|eiϕd (i). The definition of �d (i)
is �d (i) ≡ [�(i,i + x̂) + �(i,i − x̂) − �(i,i + ŷ) − �(i,i −
ŷ)]/4. The (anti-)vortices are plaquette-centered topological
defects of the phase field. The winding number or vorticity
of the (anti-)vortex is defined as the anticlockwise sum of the
phase difference around each plaquette of the square lattice
(divided by 2π ). For each plaquette labeled by its lower-left
corner i, its four vertices anticlockwisely are i1 = i,i2 = i +
x̂,i3 = i + x̂ + ŷ,i4 = i + ŷ. The phase difference between
two NN sites, for instance, i2 and i1, is θ2,1(i) ≡ ϕd (i2) −
ϕd (i1) = Im log(�d (i2)�∗

d (i1)). Therefore the winding number
around the plaquette i is w(i) = [θ2,1(i) + θ3,2(i) + θ4,3(i) +
θ1,4(i)]/2π . w(i) = 1 or −1 represents a vortex- or antivortex-
type topological defect around the plaquette i. The total
number of (anti-)vortices, i.e., nv , which quantifies the phase
fluctuation relevant to the topological excitations, is calculated
according to nv = ∑

i δw(i),1, i.e., the total number of plaque-
ttes with w(i) = 1 (note that without external magnetic field
the antivortex number always equals to the vortex number).
The temperature dependence of nv is shown in Figs. 1(b). One
can observe the abrupt jump of nv at approximately the same
temperature obtained from Fig. 1(a), giving further indication
of the KT-type phase transition. For illustration, Figs. 1(c) and
1(d) show snapshots of the pairing fields recorded at T = 0.06
and T = 0.12 for V = 2.4. For these two temperatures the
coherence length of the d-wave order parameter is small and
the vortices can be clearly identified as shown in the figures.
At the temperature well below TKT, the vortex density is dilute
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FIG. 2. (Color online) Temperature dependence of the spectral
function at the Fermi energy A(k,ω = 0) with k in the first Brillouin
zone (V = 2.4): From (a) to (d) T = 0.03,0.09,0.15,0.3. At T =
0.03, four sharp spectal peaks at four nodes; with the increasing
temperature, A(k,0) decreases at the nodes while piles up at the
other k’s of the underlying Fermi surface. At T = 0.3, the spectral
distribution seems like a bowl. The gap of the antinode survives at
the high temperature (For 28 × 28 lattice, T > 0.3; for a smaller-size
lattice, we find it does not close even at T > 0.5).
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and all vortices are bound together as vortex-antivortex pairs as
shown in Fig. 1(c). Above TKT, vortices gush and the unbinding
of vortex-antivortex pair is clearly illustrated as shown in
Fig. 1(d). This behavior conforms to the characteristics of
KT phase transition. Together with the observation that the
crossover regions of the SFD and phase correlation duplicate
that of the vortices, we can argue that the SC phase transition
is of the KT type.

The single-particle excitation spectra of electrons moving in
a fluctuating pairing field is highly nontrivial. Figure 2 shows
the evolution of A(k,ω = 0) as a function of temperature. The
momentum k is in the first Brillouin zone and the energy ω = 0
on the Fermi level. We set the chemical potential μ = −0.83
intentionally to have more discrete momenta on the underlying
Fermi surface and the resulting electron number is around 0.9.
At T = 0.03, four sharp spectral peaks right at the four gap
nodes are clearly resolved in Fig. 2(a), which indicates that at
temperatures well below TKT the pair fluctuations are rather
weak and the Fermi surface are actually point like as in pure
d-wave superconductors. At T = 0.09, the height of the peaks
falls while their profile extends toward the antinodal direction,
i.e., the spectral weight of other k points along the underlying
Fermi surface increases. From Fig. 2, we find that this pileup
effect of spectral weight at the vicinity of the underlying
Fermi surface increases with temperature, which is consistent
with the ARPES observations24,25 as well as the theoretical
picture.14

Next, we show the energy distribution of the spectral
function in Figs. 3(b) and 3(c) to examine the spectral gaps
opened at different k’s on the underlying Fermi surface at
two different temperatures. The selected three k’s are the
node ( 6π

14 , 6π
14 ), the wave vector ( 5π

14 , π
2 ) near the node, and

the antinode ( 2
14π

,π ), as shown in Fig. 3(a). At T = 0.05
below the KT transition, A(k,ω) for k at node displays a
sharp peak located at zero energy. Away from the node, we
find that the spectral gap opens at the selected momentum
k = ( 5π

14 , π
2 ) closest to the node and increases to its largest

value at the antinode, which conforms to the characteristic of
d-wave superconducting gap function. At higher temperature
T = 0.09, we find that the spectral peak at the node is lowered,
consistent with the observation of Fig. 2(b). Moreover, the
spectral gap at k = ( 5π

14 , π
2 ) is closed, while a spectral peak is

piled up at the zero energy, which signals the formation of
the so-called Fermi arc that extends from the node as far as
to k = ( 5π

14 , π
2 ). To quantify the length of the Fermi arc, we

examine the loss of the spectral weight24 due to the opening
of the spectral gap L = [1 − 2A(k,ω=0)

A(k,ω=−�)+A(k,ω=�) ], where the
spectral gap � is measured as half the peak to peak separation
of the spectral function. In the ideal case L = 1 means
the opening of a full spectral gap, whereas L = 0 identifies
the closing of the gap, or, in other words, the formation of the
Fermi arc. Here in analyzing our numerical results, we choose
L = 0.1 as the threshold for the arc formation. The results
are plotted in Fig. 3(d), where the variation of the length of
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FIG. 3. (Color online) (a) The Fermi surface shown as red line in the first quarter of the Brillouin zone. Three selected k points lying on
the Fermi surface are shown as large blue dots. The spectral function A(k,ω) as a function of ω for this three k points with (b) T = 0.05 and
(c) T = 0.09. (d) The Fermi-arc length versus temperature. (e) Temperature dependence of A(k = k14,ω). Black solid line (T = 0.05), red
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node point and k5. For all panels, V = 2.4.
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Fermi arcs as a function of temperature is shown. The arc
length exhibits an apparent rise near Tc, which is consistent
with the ARPES measurement.25 In addition, this jump locates
around the same temperature where SFD, phase correlation,
and the vortex density changes most remarkably, indicating the
importance of pair fluctuation in the formation of the Fermi
arc. We cut the underlying Fermi surface between the node
and antinode in the first quarter of the first Brillouin zone
into 20 equally spaced parts, with k0 denoting the node and
k20 the antinode. We examine the k14 point in Fig. 3(e). It is
clearly shown that there is a continuous increase of the spectral
weight at the Fermi level from T = 0.05 to T = 0.1, while the
spectral gap shrinks as the temperature increases, which can
be explained by the increasing broadening effect due to the
thermal pairing fluctuation.

Now we report the second shift of the zero energy spectral
weight. According to Figs. 3(b) and 3(c), we note that the
zero-energy spectral weight at the node(antinode) is always
decreaing(increasing) with temperature. However, for the
k points near the node, the zero-energy spectral weight
first increases with temperature and then decreases above a
temperature whose value depends on k as shown in Fig. 3(f).
We call this phenomenon the second shift, which can be
understood according to the theory of Berg and Altman.14

Because of the Doppler-shift effect, the zero-energy spectral
weight of the node is transferred to its neighboring k points
and is gradually exhausted nearby Tc; the neighboring points
received the zero energy spectral weight from the node
and, also due to the same effect, shift their zero-energy
spectral weight to their neighboring points. The higher the
temperature, the less they get and the more they shift. For
high-enough temperatures, both the node and the neighboring
points have an approximately equal amount of the zero-
energy spectral weight as shown in Fig. 3(f), and the zero-
energy spectral weights of these points saturate and begin to
decrease.

IV. CONCLUSIONS

In conclusion, we have carried out the classical Monte
Carlo simulation of the 2D attractive Hubbard model. We have
presented a local-update procedure based on the Matsubara
Green’s function using the Nambu-Gor’kov formalism, which
increases the exploration of the configuration space. We
found that thermal fluctuations do contribute to the pileup
of low-energy spectral weight on the underlying Fermi surface
and the evolution of Fermi arcs with temperature. The abrupt
jump of the arc length is a qualitative result caused by the
continuous piling up of zero-energy spectral weight, and the
second shift suggests that E. Berg and E. Altman’s idea works
better than simply the thermally broadening effect. Finally,
taking superfluid density as the SC criteria is effective when
interaction V is small.
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APPENDIX: SUPERFLUID DENSITY

The superfluid density can be obtained by applying the
linear response theory to the homogenous superconducting
state.26 Here we will use Gor’kov Green’s function to express
the superfluid weight. We start from the following formula26:

Ds

πe2
= 1

Nh̄2 〈−K̂x〉 − �xx(qx = 0,qy → 0,i
m = 0),

(A1)

where Ds represents the superfluid weight and measures the
ratio of superfluid density to mass. Here K̂x denotes the
electron kinetic energy along the x direction and

〈−K̂x〉 =
∑
kσ

〈c†kσ ckσ 〉
mx

k
= 2

∑
k,ωn

G11(k,iωn)eiωn0+

mx
k

, (A2)

mx
k = (∂2εk/∂k2

x)−1 the electron effective mass with εk =
−2t(cos kx + cos ky) − 4t ′ cos kx cos ky the electron disper-
sion. �xx is the current-current correlation function defined
in momentum and imaginary time space

�xx(q,τ ) = 1

N
〈Tτ ĵx(q,τ )ĵx(−q,0)〉, (A3)

where ĵx(q) = 1
h̄
eiqx/2 ∑

kσ vx
k+q/2c

†
kσ ck+qσ is the current-

density operator and vx
k = ∂εk/∂kx denotes the group velocity

of electron. Performing a Fourier transform with respect to
imaginary time, we have

�xx(q,i
m) =
∫ β

0
dτei
mτ�xx(q,τ ). (A4)

Combining Eqs. (A1), (A2), and (A4) followed by straightfor-
ward derivation, we have the equation for superfluid density
expressed using the Gor’kov Green’s function,

ns

m∗ ≡ Ds

πe2
= 2

Nh̄2

∑
k,ωn

G11(k,iωn)eiωn0+

mx
k

+ 1

Nh̄2β

∑
k,ωn

(
vx

k+q/2

)2
tr[G(k,iωn)

×G(k + q,iωn)]

∣∣∣∣
qx=0,qy→0

. (A5)

We will then use the above formula for pair-fluctuating
superconductors, whose superfluid weight is given by

Ds =
∫

D�D�̄e−β
(�,�̄)Ds(�,�̄)∫
D�D�̄e−β
(�,�̄)

, (A6)

where Ds(�,�̄) denotes the superfluid weight for a certain
configuration �. Considering that � is spatially inhomo-
geneous, we should first perform Fourier transform on the
real-space Gor’kov Green’s function that has been obtained
and updated during the random walk through the configuration
space,

G(k,iωn; �) = 1

N

∑
i,j

G(i,j,iωn; �)eik·(i−j). (A7)

After the transformation, Eq. (A7) is inserted into Eq. (A5)
to calculate the superfluid density corresponding to one
configuration and then use Eq. (A6) to obtain the statistical
average over configurations.
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