26,935 research outputs found

    Electronic structure induced reconstruction and magnetic ordering at the LaAlO3_3|SrTiO3_3 interface

    Get PDF
    Using local density approximation (LDA) calculations we predict GdFeO3_3-like rotation of TiO6_6 octahedra at the nn-type interface between LaAlO3_3 and SrTiO3_3. The narrowing of the Ti dd bandwidth which results means that for very modest values of UU, LDA+U+U calculations predict charge and spin ordering at the interface. Recent experimental evidence for magnetic interface ordering may be understood in terms of the close proximity of an antiferromagnetic insulating ground state to a ferromagnetic metallic excited state

    Flavor Evolution of the Neutronization Neutrino Burst from an O-Ne-Mg Core-Collapse Supernova

    Full text link
    We present results of 3-neutrino flavor evolution simulations for the neutronization burst from an O-Ne-Mg core-collapse supernova. We find that nonlinear neutrino self-coupling engineers a single spectral feature of stepwise conversion in the inverted neutrino mass hierarchy case and in the normal mass hierarchy case, a superposition of two such features corresponding to the vacuum neutrino mass-squared differences associated with solar and atmospheric neutrino oscillations. These neutrino spectral features offer a unique potential probe of the conditions in the supernova environment and may allow us to distinguish between O-Ne-Mg and Fe core-collapse supernovae.Comment: 4 pages, 2 figures. Version accepted by PR

    Neutrino Mass Hierarchy and Stepwise Spectral Swapping of Supernova Neutrino Flavors

    Full text link
    We examine a phenomenon recently predicted by numerical simulations of supernova neutrino flavor evolution: the swapping of supernova νe\nu_e and νμ,τ\nu_{\mu,\tau} energy spectra below (above) energy \EC for the normal (inverted) neutrino mass hierarchy. We present the results of large-scale numerical calculations which show that in the normal neutrino mass hierarchy case, \EC decreases as the assumed νeνμ,τ\nu_e\rightleftharpoons\nu_{\mu,\tau} effective 2×22\times 2 vacuum mixing angle (θ13\simeq \theta_{1 3}) is decreased. However, these calculations also indicate that \EC is essentially independent of the vacuum mixing angle in the inverted neutrino mass hierarchy case. With a good neutrino signal from a future Galactic supernova, the above results could be used to determine the neutrino mass hierarchy even if θ13\theta_{13} is too small to be detected in terrestrial neutrino oscillation experiments.Comment: 4 pages, 2 figures. Version accepted by PR

    Magnetoresistance due to Domain Walls in Micron Scale Fe Wires with Stripe Domains

    Full text link
    The magnetoresistance (MR) associated with domain boundaries has been investigated in microfabricated bcc Fe (0.65 to 20 μ\mum linewidth) wires with controlled stripe domains. Domain configurations have been characterized using magnetic force microscopy. MR measurements as a function of field angle, temperature and domain configuration are used to estimate MR contributions due to resistivity anisotropy and domain walls. Evidence is presented that domain boundaries enhance the conductivity in such microstructures over a broad range of temperatures (1.5 K to 80 K).Comment: 8 pages, 3 postscript figures, and 2 jpg images (Fig 1 and 2) to appear in IEEE Transactions on Magnetics (Fall 1998

    Exploration of Resonant Continuum and Giant Resonance in the Relativistic Approach

    Get PDF
    Single-particle resonant-states in the continuum are determined by solving scattering states of the Dirac equation with proper asymptotic conditions in the relativistic mean field theory (RMF). The regular and irregular solutions of the Dirac equation at a large radius where the nuclear potentials vanish are relativistic Coulomb wave functions, which are calculated numerically. Energies, widths and wave functions of single-particle resonance states in the continuum for ^{120}Sn are studied in the RMF with the parameter set of NL3. The isoscalar giant octupole resonance of ^{120}Sn is investigated in a fully consistent relativistic random phase approximation. Comparing the results with including full continuum states and only those single-particle resonances we find that the contributions from those resonant-states dominate in the nuclear giant resonant processes.Comment: 16 pages, 2 figure

    Electric Transport Theory of Dirac Fermions in Graphene

    Full text link
    Using the self-consistent Born approximation to the Dirac fermions under finite-range impurity scatterings, we show that the current-current correlation function is determined by four-coupled integral equations. This is very different from the case for impurities with short-range potentials. As a test of the present approach, we calculate the electric conductivity in graphene for charged impurities with screened Coulomb potentials. The obtained conductivity at zero temperature varies linearly with the carrier concentration, and the minimum conductivity at zero doping is larger than the existing theoretical predictions, but still smaller than that of the experimental measurement. The overall behavior of the conductivity obtained by the present calculation at room temperature is similar to that at zero temperature except the minimum conductivity is slightly larger.Comment: 6 pages, 3 figure

    Density Fluctuation Effects on Collective Neutrino Oscillations in O-Ne-Mg Core-Collapse Supernovae

    Full text link
    We investigate the effect of matter density fluctuations on supernova collective neutrino flavor oscillations. In particular, we use full multi-angle, 3-flavor, self-consistent simulations of the evolution of the neutrino flavor field in the envelope of an O-Ne-Mg core collapse supernova at shock break-out (neutrino neutronization burst) to study the effect of the matter density "bump" left by the He-burning shell. We find a seemingly counterintuitive increase in the overall electron neutrino survival probability created by this matter density feature. We discuss this behavior in terms of the interplay between the matter density profile and neutrino collective effects. While our results give new insights into this interplay, they also suggest an immediate consequence for supernova neutrino burst detection: it will be difficult to use a burst signal to extract information on fossil burning shells or other fluctuations of this scale in the matter density profile. Consistent with previous studies, our results also show that the interplay of neutrino self-coupling and matter fluctuation could cause a significant increase in the electron neutrino survival probability at very low energyComment: 12 pages, 11 figures. This is a pre-submission version of the pape

    Coherent Development of Neutrino Flavor in the Supernova Environment

    Full text link
    We calculate coherent neutrino and antineutrino flavor transformation in the supernova environment, for the first time including a self-consistent treatment of forward scattering-induced coupling and entanglement of intersecting neutrino/antineutrino trajectories. For the atmospheric neutrino mass-squared difference we find that in the normal (inverted) mass hierarchy the more tangentially-propagating (radially-propagating) neutrinos and antineutrinos can initiate collective, simultaneous medium-enhanced flavor conversion of these particles across broad ranges of energy and propagation direction. Accompanying alterations in neutrino/antineutrino energy spectra and/or fluxes could affect supernova nucleosynthesis and the expected neutrino signal.Comment: 4 pages, 3 figure

    Concave Switching in Single and Multihop Networks

    Full text link
    Switched queueing networks model wireless networks, input queued switches and numerous other networked communications systems. For single-hop networks, we consider a {(α,g\alpha,g)-switch policy} which combines the MaxWeight policies with bandwidth sharing networks -- a further well studied model of Internet congestion. We prove the maximum stability property for this class of randomized policies. Thus these policies have the same first order behavior as the MaxWeight policies. However, for multihop networks some of these generalized polices address a number of critical weakness of the MaxWeight/BackPressure policies. For multihop networks with fixed routing, we consider the Proportional Scheduler (or (1,log)-policy). In this setting, the BackPressure policy is maximum stable, but must maintain a queue for every route-destination, which typically grows rapidly with a network's size. However, this proportionally fair policy only needs to maintain a queue for each outgoing link, which is typically bounded in number. As is common with Internet routing, by maintaining per-link queueing each node only needs to know the next hop for each packet and not its entire route. Further, in contrast to BackPressure, the Proportional Scheduler does not compare downstream queue lengths to determine weights, only local link information is required. This leads to greater potential for decomposed implementations of the policy. Through a reduction argument and an entropy argument, we demonstrate that, whilst maintaining substantially less queueing overhead, the Proportional Scheduler achieves maximum throughput stability.Comment: 28 page
    corecore