26,595 research outputs found

    On the momentum-dependence of KK^{-}-nuclear potentials

    Get PDF
    The momentum dependent KK^{-}-nucleus optical potentials are obtained based on the relativistic mean-field theory. By considering the quarks coordinates of KK^- meson, we introduced a momentum-dependent "form factor" to modify the coupling vertexes. The parameters in the form factors are determined by fitting the experimental KK^{-}-nucleus scattering data. It is found that the real part of the optical potentials decrease with increasing KK^- momenta, however the imaginary potentials increase at first with increasing momenta up to Pk=450550P_k=450\sim 550 MeV and then decrease. By comparing the calculated KK^- mean free paths with those from KnK^-n/KpK^-p scattering data, we suggested that the real potential depth is V080V_0\sim 80 MeV, and the imaginary potential parameter is W065W_0\sim 65 MeV.Comment: 9 pages, 4 figure

    The properties of kaonic nuclei in relativistic mean-field theory

    Full text link
    The static properties of some possible light and moderate kaonic nuclei, from C to Ti, are studied in the relativistic mean-field theory. The 1s and 1p state binding energies of KK^- are in the range of 739673\sim 96 MeV and 226322\sim 63 MeV, respectively. The binding energies of 1p states increase monotonically with the nucleon number A. The upper limit of the widths are about 42±1442\pm 14 MeV for the 1s states, and about 71±1071\pm 10 MeV for the 1p states. The lower limit of the widths are about 12±412\pm 4 MeV for the 1s states, and 21±321\pm 3 MeV for the 1p states. If V030V_{0}\leq 30 MeV, the discrete KK^- bound states should be identified in experiment. The shrinkage effect is found in the possible kaonic nuclei. The interior nuclear density increases obviously, the densest center density is about 2.1ρ02.1\rho_{0}.Comment: 9 pages, 2 tables and 1 figure, widths are considered, changes a lo

    Exploring the quantum critical behaviour in a driven Tavis-Cummings circuit

    Full text link
    Quantum phase transitions play an important role in many-body systems and have been a research focus in conventional condensed matter physics over the past few decades. Artificial atoms, such as superconducting qubits that can be individually manipulated, provide a new paradigm of realising and exploring quantum phase transitions by engineering an on-chip quantum simulator. Here we demonstrate experimentally the quantum critical behaviour in a highly-controllable superconducting circuit, consisting of four qubits coupled to a common resonator mode. By off-resonantly driving the system to renormalise the critical spin-field coupling strength, we have observed a four-qubit non-equilibrium quantum phase transition in a dynamical manner, i.e., we sweep the critical coupling strength over time and monitor the four-qubit scaled moments for a signature of a structural change of the system's eigenstates. Our observation of the non-equilibrium quantum phase transition, which is in good agreement with the driven Tavis-Cummings theory under decoherence, offers new experimental approaches towards exploring quantum phase transition related science, such as scaling behaviours, parity breaking and long-range quantum correlations.Comment: Main text with 3 figure

    Nonpolar resistive switching in Cu/SiC/Au non-volatile resistive memory devices

    No full text
    Amorphous silicon carbide (a-SiC) based resistive memory (RM) Cu/a-SiC/Au devices were fabricated and their resistive switching characteristics investigated. All four possible modes of nonpolar resistive switching were achieved with ON/OFF ratio in the range 10 6-10 8. Detailed current-voltage I-V characteristics analysis suggests that the conduction mechanism in low resistance state is due to the formation of metallic filaments. Schottky emission is proven to be the dominant conduction mechanism in high resistance state which results from the Schottky contacts between the metal electrodes and SiC. ON/OFF ratios exceeding 10 7 over 10 years were also predicted from state retention characterizations. These results suggest promising application potentials for Cu/a-SiC/Au RM

    Very Old Isolated Compact Objects as Dark Matter Probes

    Full text link
    Very old isolated neutron stars and white dwarfs have been suggested to be probes of dark matter. To play such a role, two requests should be fulfilled, i.e., the annihilation luminosity of the captured dark matter particles is above the thermal emission of the cooling compact objects (request-I) and also dominate over the energy output due to the accretion of normal matter onto the compact objects (request-II). Request-I calls for very dense dark matter medium and the critical density sensitively depends on the residual surface temperature of the very old compact objects. The accretion of interstellar/intracluster medium onto the compact objects is governed by the physical properties of the medium and by the magnetization and rotation of the stars and may outshine the signal of dark matter annihilation. Only in a few specific scenarios both requests are satisfied and the compact objects are dark matter burners. The observational challenges are discussed and a possible way to identify the dark matter burners is outlined.Comment: 9 pages including 1 Figure, to appear in Phys. Rev.
    corecore