35 research outputs found
Non-intrusive Load Monitoring based on Self-supervised Learning
Deep learning models for non-intrusive load monitoring (NILM) tend to require
a large amount of labeled data for training. However, it is difficult to
generalize the trained models to unseen sites due to different load
characteristics and operating patterns of appliances between data sets. For
addressing such problems, self-supervised learning (SSL) is proposed in this
paper, where labeled appliance-level data from the target data set or house is
not required. Initially, only the aggregate power readings from target data set
are required to pre-train a general network via a self-supervised pretext task
to map aggregate power sequences to derived representatives. Then, supervised
downstream tasks are carried out for each appliance category to fine-tune the
pre-trained network, where the features learned in the pretext task are
transferred. Utilizing labeled source data sets enables the downstream tasks to
learn how each load is disaggregated, by mapping the aggregate to labels.
Finally, the fine-tuned network is applied to load disaggregation for the
target sites. For validation, multiple experimental cases are designed based on
three publicly accessible REDD, UK-DALE, and REFIT data sets. Besides,
state-of-the-art neural networks are employed to perform NILM task in the
experiments. Based on the NILM results in various cases, SSL generally
outperforms zero-shot learning in improving load disaggregation performance
without any sub-metering data from the target data sets.Comment: 12 pages,10 figure
Differential stepwise evolution of SARS coronavirus functional proteins in different host species
<p>Abstract</p> <p>Background</p> <p>SARS coronavirus (SARS-CoV) was identified as the etiological agent of SARS, and extensive investigations indicated that it originated from an animal source (probably bats) and was recently introduced into the human population via wildlife animals from wet markets in southern China. Previous studies revealed that the spike (S) protein of SARS had experienced adaptive evolution, but whether other functional proteins of SARS have undergone adaptive evolution is not known.</p> <p>Results</p> <p>We employed several methods to investigate selective pressure among different SARS-CoV groups representing different epidemic periods and hosts. Our results suggest that most functional proteins of SARS-CoV have experienced a stepwise adaptive evolutionary pathway. Similar to previous studies, the spike protein underwent strong positive selection in the early and middle phases, and became stabilized in the late phase. In addition, the replicase experienced positive selection only in human patients, whereas assembly proteins experienced positive selection mainly in the middle and late phases. No positive selection was found in any proteins of bat SARS-like-CoV. Furthermore, specific amino acid sites that may be the targets of positive selection in each group are identified.</p> <p>Conclusion</p> <p>This extensive evolutionary analysis revealed the stepwise evolution of different functional proteins of SARS-CoVs at different epidemic stages and different hosts. These results support the hypothesis that SARS-CoV originated from bats and that the spill over into civets and humans were more recent events.</p
The impact of novel coronavirus SARS-CoV-2 among healthcare workers in hospitals: An aerial overview
The ongoing outbreak of COVID-19, caused by the novel coronavirus SARS-CoV-2, places healthcare workers
at an increased risk of infection as they are in close contact with patients. In this article, we report an overview of cases of infected healthcare workers in China and Italy during the early periods of the COVID-19 epidemic. China’s coronavirus response highlights the importance of implementing effective public health
strategies. The authorities worldwide therefore, need to be extremely cautious when they implement stringent
protective measures that safeguard healthcare workers in hospitals and counteract the threats created by the pandemic.
Key Words:
COVID-19 disease, Medical staff, Protective measures,
Severe acute respiratory syndrome, coronavirus 2,
Person-to-person transmissio
Postoperative myopic shift and visual acuity rehabilitation in patients with bilateral congenital cataracts
BackgroundThis study aimed to explore the postoperative myopic shift and its relationship to visual acuity rehabilitation in patients with bilateral congenital cataracts (CCs).MethodsBilateral CC patients who underwent cataract extraction and primary intraocular lens implantations before 6 years old were included and divided into five groups according to surgical ages (<2, 2–3, 3–4, 4–5, and 5–6 years). The postoperative myopic shift rates, spherical equivalents (SEs), and the best corrected visual acuity (BCVA) were measured and analyzed.ResultsA total of 1,137 refractive measurements from 234 patients were included, with a mean follow-up period of 34 months. The postoperative mean SEs at each follow-up in the five groups were linearly fitted with a mean R2 = 0.93 ± 0.03, which showed a downtrend of SE with age (linear regression). Among patients with a follow-up of 4 years, the mean postoperative myopic shift rate was 0.84, 0.81, 0.68, 0.24, and 0.28 diopters per year (D/y) in the five age groups (from young to old), respectively. The BCVA of those with a surgical age of <2 years at the 4-year visit was 0.26 (LogMAR), and the mean postoperative myopic shift rate was 0.84 D/y. For patients with a surgical age of 2–6 years, a poorer BCVA at the 4-year visit was found in those with higher postoperative myopic shift rates (r = 0.974, p = 0.026, Pearson’s correlation test).ConclusionPerforming cataract surgery for patients before 2 years old and decreasing the postoperative myopic shift rates for those with a surgical age of 2–6 years may benefit visual acuity rehabilitation
Transcript analyses reveal a comprehensive role of abscisic acid in modulating fruit ripening in Chinese jujube
Abstract Background Chinese jujube (Ziziphus jujuba Mill.) is a non-climacteric fruit; however, the underlying mechanism of ripening and the role of abscisic acid involved in this process are not yet understood for this species. Results In the present study, a positive correlation between dynamic changes in endogenous ABA and the onset of jujube ripening was determined. Transcript analyses suggested that the expression balance among genes encoding nine-cis-epoxycarotenoid dioxygenase (ZjNCED3), ABA-8′-hydroxylase (ZjCYP707A2), and beta-glucosidase (ZjBG4, ZjBG5, ZjBG8, and ZjBG9) has an important role in maintaining ABA accumulation, while the expression of a receptor (ZjPYL8), protein phosphatase 2C (ZjPP2C4–8), and sucrose nonfermenting 1-related protein kinase 2 (ZjSnRK2–2 and ZjSnRK2–5) is important in regulating fruit sensitivity to ABA applications. In addition, white mature ‘Dongzao’ fruit were harvested and treated with 50 mg L− 1 ABA or 50 mg L− 1 nordihydroguaiaretic acid (NDGA) to explore the role of ABA in jujube fruit ripening. By comparative transcriptome analyses, 1103 and 505 genes were differentially expressed in response to ABA and NDGA applications on the 1st day after treatment, respectively. These DEGs were associated with photosynthesis, secondary, lipid, cell wall, and starch and sugar metabolic processes, suggesting the involvement of ABA in modulating jujube fruit ripening. Moreover, ABA also exhibited crosstalk with other phytohormones and transcription factors, indicating a regulatory network for jujube fruit ripening. Conclusions Our study further elucidated ABA-associated metabolic and regulatory processes. These findings are helpful for improving strategies for jujube fruit storage and for gaining insights into understand complex non-climacteric fruit ripening processes
Factors influencing the immunogenicity of influenza vaccines
Annual vaccination is the best prevention of influenza. However, the immunogenicity of influenza vaccines varies among different populations. It is important to fully identify the factors that may affect the immunogenicity of the vaccines to provide best protection for vaccine recipients. This paper reviews the factors that may influence the immunogenicity of influenza vaccines from the aspects of vaccine factors, adjuvants, individual factors, repeated vaccination, and genetic factors. The confirmed or hypothesized molecular mechanisms of these factors have also been briefly summarized
Differential Responses of Digesta- and Mucosa-Associated Jejunal Microbiota of Hu Sheep to Pelleted and Non-Pelleted High-Grain Diets
In the present study, we utilized 16S rRNA sequencing to uncover the impacts of non-pelleted (HG) or high-grain pelleted (HP) diets on the microbial structure and potential functions of digesta- and mucosa-associated microbiota in the jejunum of Hu sheep. Here, we randomly assigned 15 healthy male Hu sheep into three groups and fed the control diets (CON), HG, and HP diets, respectively. The experiment period was 60 days. The HP diets had the same nutritional ingredients as the HG diets but in pelleted form. At the finish of the experiment, the jejunal digesta and mucosa were gathered for microbial sequencing. The results of PCoA and PERMANOVA showed that different dietary treatments had significant impact (p < 0.05) on digesta- and mucosa-associated microbiota in the jejunum of Hu sheep. For specific differences, HG diets significantly increased (p < 0.05) the abundance of some acid-producing bacteria in both jejunal digesta (Bifidobacterium, OTU151, and OTU16) and mucosa (Rikenellaceae RC9 gut group, and Bifidobacterium) of Hu sheep compared with the CON diets. Besides the similar effects of the HG diets (increased the acid-producing bacteria such as Olsenella, Pseudoramibacter, and Shuttleworthia), our results also showed that the HP diets significantly decreased (p < 0.05) the abundance of some pro-inflammatory bacteria in the jejunal digesta (Mogibacterium, and Marvinbryantia) and mucosa (Chitinophaga, and Candidatus Saccharimonas) of Hu sheep compared with the HG diets. Collectively, these findings contributed to enriching the knowledge about the effects of HG diets on the structure and function of intestinal microbiota in ruminants
Effects of <i>Tremella fuciformis</i> Mushroom Polysaccharides on Structure, Pasting, and Thermal Properties of Chinese Chestnuts (<i>Castanea henryi</i>) Starch Granules under Different Freeze–Thaw Cycles
The purpose of this study was to investigate the effect of Tremella fuciformis polysaccharides on the physicochemical properties of freeze–thawed cone chestnut starch. Various aspects, including water content, crystallinity, particle size, gelatinization, retrogradation, thermal properties, rheological properties, and texture, were examined. The results revealed that moderate freezing and thawing processes increased the retrogradation of starch; particle size, viscosity, shear type, hinning degree, and hardness decreased. After adding Tremella fuciformis polysaccharide, the particle size, relative crystallinity, and gelatinization temperature decreased, which showed solid characteristics. Consequently, the inclusion of Tremella fuciformis polysaccharide effectively countered dehydration caused by freezing and thawing, reduced viscosity, and prevented the retrogradation of frozen–thawed chestnut starch. Moreover, Tremella fuciformis polysaccharide played a significant role in enhancing the stability of the frozen–thawed chestnut starch. These findings highlight the potential benefits of incorporating Tremella fuciformis polysaccharides in starch-based products subjected to freeze–thaw cycles
Anti-Oxidized Self-Assembly of Multilayered F-Mene/MXene/TPU Composite with Improved Environmental Stability and Pressure Sensing Performances
MXenes, as emerging 2D sensing materials for next-generation electronics, have attracted tremendous attention owing to their extraordinary electrical conductivity, mechanical strength, and flexibility. However, challenges remain due to the weak stability in the oxygen environment and nonnegligible aggregation of layered MXenes, which severely affect the durability and sensing performances of the corresponding MXene-based pressure sensors, respectively. Here, in this work, we propose an easy-to-fabricate self-assembly strategy to prepare multilayered MXene composite films, where the first layer MXene is hydrogen-bond self-assembled on the electrospun thermoplastic urethane (TPU) fibers surface and the anti-oxidized functionalized-MXene (f-MXene) is subsequently adhered on the MXene layer by spontaneous electrostatic attraction. Remarkably, the f-MXene surface is functionalized with silanization reagents to form a hydrophobic protective layer, thus preventing the oxidation of the MXene-based pressure sensor during service. Simultaneously, the electrostatic self-assembled MXene and f-MXene successfully avoid the invalid stacking of MXene, leading to an improved pressure sensitivity. Moreover, the adopted electrospinning method can facilitate cyclic self-assembly and the formation of a hierarchical micro-nano porous structure of the multilayered f-MXene/MXene/TPU (M-fM2T) composite. The gradient pores can generate changes in the conductive pathways within a wide loading range, broadening the pressure detection range of the as-proposed multilayered f-MXene/MXene/TPU piezoresistive sensor (M-fM2TPS). Experimentally, these novel features endow our M-fM2TPS with an outstanding maximum sensitivity of 40.31 kPa−1 and an extensive sensing range of up to 120 kPa. Additionally, our M-fM2TPS exhibits excellent anti-oxidized properties for environmental stability and mechanical reliability for long-term use, which shows only ~0.8% fractional resistance changes after being placed in a natural environment for over 30 days and provides a reproducible loading–unloading pressure measurement for more than 1000 cycles. As a proof of concept, the M-fM2TPS is deployed to monitor human movements and radial artery pulse. Our anti-oxidized self-assembly strategy of multilayered MXene is expected to guide the future investigation of MXene-based advanced sensors with commercial values