1,914 research outputs found

    Multiparty Quantum Secret Sharing

    Full text link
    Based on a quantum secure direct communication (QSDC) protocol [Phys. Rev. A69(04)052319], we propose a (n,n)(n,n)-threshold scheme of multiparty quantum secret sharing of classical messages (QSSCM) using only single photons. We take advantage of this multiparty QSSCM scheme to establish a scheme of multiparty secret sharing of quantum information (SSQI), in which only all quantum information receivers collaborate can the original qubit be reconstructed. A general idea is also proposed for constructing multiparty SSQI schemes from any QSSCM scheme

    Multiparty Quantum Secret Sharing Based on Entanglement Swapping

    Full text link
    A multiparty quantum secret sharing (QSS) protocol is proposed by using swapping quantum entanglement of Bell states. The secret messages are imposed on Bell states by local unitary operations. The secret messages are split into several parts and each part is distributed to a party so that no action of a subset of all the parties but their entire cooperation is able to read out the secret messages. In addition, the dense coding is used in this protocol to achieve a high efficiency. The security of the present multiparty QSS against eavesdropping has been analyzed and confirmed even in a noisy quantum channel.Comment: 5 page

    Phase Reversal Diffraction in incoherent light

    Full text link
    Phase reversal occurs in the propagation of an electromagnetic wave in a negatively refracting medium or a phase-conjugate interface. Here we report the experimental observation of phase reversal diffraction without the above devices. Our experimental results and theoretical analysis demonstrate that phase reversal diffraction can be formed through the first-order field correlation of chaotic light. The experimental realization is similar to phase reversal behavior in negatively refracting media.Comment: 8 pages, 5 figure

    On product-one sequences over dihedral groups

    Full text link
    Let GG be a finite group. A sequence over GG means a finite sequence of terms from GG, where repetition is allowed and the order is disregarded. A product-one sequence is a sequence whose elements can be ordered such that their product equals the identity element of the group. The set of all product-one sequences over GG (with concatenation of sequences as the operation) is a finitely generated C-monoid. Product-one sequences over dihedral groups have a variety of extremal properties. This article provides a detailed investigation, with methods from arithmetic combinatorics, of the arithmetic of the monoid of product-one sequences over dihedral groups.Comment: to appear in Journal of Algebra and its Application

    Neutron Scattering Measurements of Spatially Anisotropic Magnetic Exchange Interactions in Semiconducting K0.85Fe1.54Se2 (TN=280 K)

    Full text link
    We use neutron scattering to study the spin excitations associated with the stripe antiferromagnetic (AFM) order in semiconducting K0.85_{0.85}Fe1.54_{1.54}Se2_2 (TNT_N=280280 K). We show that the spin wave spectra can be accurately described by an effective Heisenberg Hamiltonian with highly anisotropic in-plane couplings at TT= 55 K. At high temperature (TT= 300300 K) above TNT_N, short range magnetic correlation with anisotropic correlation lengths are observed. Our results suggest that, despite the dramatic difference in the Fermi surface topology, the in-plane anisotropic magnetic couplings are a fundamental property of the iron based compounds; this implies that their antiferromagnetism may originate from local strong correlation effects rather than weak coupling Fermi surface nesting.Comment: 5 pages, 4 figure

    Enhanced Orbital Degeneracy in Momentum Space for LaOFeAs

    Full text link
    The Fermi surfaces (FS) of LaOFeAs (in kzk_z=0 plane) consist of two hole-type circles around Γ\Gamma point, which do not touch each other, and two electron-type co-centered ellipses around M point, which are degenerate along the M-X line. By first-principles calculations, here we show that additional degeneracy exists for the two electron-type FS, and the crucial role of F-doping and pressure is to enhance this orbital degeneracy. It is suggested that the inter-orbital fluctuation is the key point to understand the unconventional superconductivity in these materials.Comment: 4 pages, 5 figure

    Square patterns in Rayleigh-Benard convection with rotation about a vertical axis

    Full text link
    We present experimental results for Rayleigh-Benard convection with rotation about a vertical axis at dimensionless rotation rates in the range 0 to 250 and upto 20% above the onset. Critical Rayleigh numbers and wavenumbers agree with predictions of linear stability analysis. For rotation rates greater than 70 and close to onset, the patterns are cellular with local four-fold coordination and differ from the theoretically expected Kuppers-Lortz unstable state. Stable as well as intermittent defect-free square lattices exist over certain parameter ranges. Over other ranges defects dynamically disrupt the lattice but cellular flow and local four-fold coordination is maintained.Comment: ReVTeX, 4 pages, 7 eps figures include
    • …
    corecore