107 research outputs found

    The exploration for e-commerce sustainable marketing

    Get PDF
    E-commerce marketing plays an important role in the development of e-commerce. However, many e-commerce marketing types are obscure, excessive and exaggerated. If some consumers buy and use inappropriate products or services, the consumers may suffer from greater losses. As a result, these marketing types are not sustainable, and also hinder the development of e-commerce. Research on optimizing and restructuring the e-commerce marketing has important practical significance. The article analyzes and studies existing e-commerce marketing according to the interests of all parties and aim to result in a win-win situation. We introduce the ideas and methods from the Business Process Reengineering (BPR) to optimize and restructure e-commerce marketing. Finally, we discuss the characteristics, content and process of the e-commerce sustainable marketing and give some discussions on its real applications

    Folding of Tubular Waterbomb

    Get PDF
    Origami has recently emerged as a promising building block of mechanical metamaterials because it offers a purely geometric design approach independent of scale and constituent material. The folding mechanics of origami-inspired metamaterials, i.e., whether the deformation involves only rotation of crease lines (rigid origami) or both crease rotation and facet distortion (nonrigid origami), is critical for fine-tuning their mechanical properties yet very difficult to determine for origami patterns with complex behaviors. Here, we characterize the folding of tubular waterbomb using a combined kinematic and structural analysis. We for the first time uncover that a waterbomb tube can undergo a mixed mode involving both rigid origami motion and nonrigid structural deformation, and the transition between them can lead to a substantial change in the stiffness. Furthermore, we derive theoretically the range of geometric parameters for the transition to occur, which paves the road to program the mechanical properties of the waterbomb pattern. We expect that such analysis and design approach will be applicable to more general origami patterns to create innovative programmable metamaterials, serving for a wide range of applications including aerospace systems, soft robotics, morphing structures, and medical devices

    The experience of long-stay patients in a forensic psychiatric hospital in China: a qualitative study

    Get PDF
    open access articleBackground Long stay in forensic psychiatric hospitals is common in patients who are defined as “not criminally responsible on account of mental disorder”. However, little is known about how these patients experience and perceive the long stay within these settings. The aim of this study is to explore the perception and needs of long-stay patients in forensic psychiatric hospitals in China. Methods In-depth semi-structured interviews were conducted with 21 participants who had lived in the forensic psychiatry hospital for more than 8 years. We used thematic analysis strategies to analyse the qualitative data. Results Participants’ perceptions clustered seven themes: hopelessness, loneliness, worthlessness, low mood, sleep disturbances, lack of freedom, and lack of mental health intervention. Conclusions The views and opinions expressed by long-stay patients showed that psychological distress is prevailing in forensic psychiatric hospitals. Adequate and effective care and mental health interventions are recommended to be tailored for their special needs

    Theoretical characterization of a non-rigid-foldable square-twist origami for property programmability

    Get PDF
    Using non-rigid-foldable origami patterns to design mechanical metamaterials could 14 potentially offer more versatile behaviors than the rigid-foldable ones, but their applications are 15 limited by the lack of analytical framework for predicting their behavior. Here, we propose a 16 theoretical model to characterize a non-rigid-foldable square-twist origami pattern by its rigid origami 17 counterpart. Based on the experimentally observed deformation mode the square-twist, a virtual 18 crease was added in the central square to turn the non-rigid-foldable pattern to a rigid-foldable one. 19 Two possible deformation paths of the non-rigid-foldable pattern were calculated through kinematic 20 analysis of its rigid origami counterpart, and the associated energy and force were derived 21 analytically. Using the theoretical model, we for the first time discovered that the non-rigid-foldable 22 structure bifurcated to follow a low-energy deformation path, which was validated through 23 experiments. Furthermore, the mechanical properties of the structure could be programmed by the 24 geometrical parameters of the pattern and material stiffness of the creases and facets. This work thus 25 paves the way for development of non-rigid-foldable origami-based metamaterials serving for 26 mechanical, thermal, and other engineering applications

    Simple and Effective Relation-based Embedding Propagation for Knowledge Representation Learning

    Full text link
    Relational graph neural networks have garnered particular attention to encode graph context in knowledge graphs (KGs). Although they achieved competitive performance on small KGs, how to efficiently and effectively utilize graph context for large KGs remains an open problem. To this end, we propose the Relation-based Embedding Propagation (REP) method. It is a post-processing technique to adapt pre-trained KG embeddings with graph context. As relations in KGs are directional, we model the incoming head context and the outgoing tail context separately. Accordingly, we design relational context functions with no external parameters. Besides, we use averaging to aggregate context information, making REP more computation-efficient. We theoretically prove that such designs can avoid information distortion during propagation. Extensive experiments also demonstrate that REP has significant scalability while improving or maintaining prediction quality. Notably, it averagely brings about 10% relative improvement to triplet-based embedding methods on OGBL-WikiKG2 and takes 5%-83% time to achieve comparable results as the state-of-the-art GC-OTE.Comment: Accepted by IJCAI 202

    Programmable stiffness and shape modulation in origami materials: Emergence of a distant actuation feature

    Get PDF
    This paper develops an origami based mechanical metamaterial with programmable deformation-dependent stiffness and shape modulation, leading to the realization of a distant actuation feature. Through computational and experimental analyses, we have uncovered that a waterbomb based tubular metamaterial can undergo mixed mode of deformations involving both rigid origami motion and structural deformation. Besides the capability of achieving a near-zero stiffness, a contact phase is identified that initiates a substantial increase in the stiffness with programmable features during deformation of the metamaterial. Initiation of the contact phase as a function of the applied global load can be designed based on the microstructural geometry of the waterbomb bases and their assembly. The tubular metamaterial can exhibit a unique deformation dependent spatially varying mixed mode Poisson’s ratio, which is achievable from a uniform initial configuration of the metamaterial. The spatial profile of the metamaterial can be modulated as a function of the applied far-field global force, and the configuration and assembly of the waterbomb bases. This creates a new possibility of developing a distant actuation feature in the metamaterial enabling us to achieve controlled local actuation through the application of a single far-field force. The distant actuation feature eliminates the need of installing embedded complex network of sensors, actuators and controllers in the material. The fundamental programmable features of the origami metamaterial unravelled in this paper can find wide range of applications in soft robotics, aerospace, biomedical devices and various other advanced physical systems

    Comparison of Nasopharyngeal MR, 18 F-FDG PET/CT, and 18 F-FDG PET/MR for Local Detection of Natural Killer/T-Cell Lymphoma, Nasal Type.

    Get PDF
    Objectives The present study aims to compare the diagnostic efficacy of MR, 18F-FDG PET/CT, and 18F-FDG PET/MR for the local detection of early-stage extranodal natural killer/T-cell lymphoma, nasal type (ENKTL). Patients and Methods Thirty-six patients with histologically proven early-stage ENKTL were enrolled from a phase 2 study (Cohort A). Eight nasopharyngeal anatomical regions from each patient were imaged using 18F-FDG PET/CT and MR. A further nine patients were prospectively enrolled from a multicenter, phase 3 study; these patients underwent 18F-FDG PET/CT and PET/MR after a single 18F-FDG injection (Cohort B). Region-based sensitivity and specificity were calculated. The standardized uptake values (SUV) obtained from PET/CT and PET/MR were compared, and the relationship between the SUV and apparent diffusion coefficients (ADC) of PET/MR were analyzed. Results In Cohort A, of the 288 anatomic regions, 86 demonstrated lymphoma involvement. All lesions were detected by 18F-FDG PET/CT, while only 70 were detected by MR. 18F-FDG PET/CT exhibited a higher sensitivity than MR (100% vs. 81.4%, χ2 = 17.641, P < 0.001) for local detection of malignancies. The specificity of 18F-FDG PET/CT and MR were 98.5 and 97.5%, respectively (χ2 = 0.510, P = 0.475). The accuracy of 18F-FDG PET/CT was 99.0% and the accuracy of MR was 92.7% (χ2 = 14.087, P < 0.001). In Cohort B, 72 anatomical regions were analyzed. PET/CT and PET/MR have a sensitivity of 100% and a specificity of 92.5%. The two methods were consistent (κ = 0.833, P < 0.001). There was a significant correlation between PET/MR SUVmax and PET/CT SUVmax (r = 0.711, P < 0.001), and SUVmean (r = 0.685, P < 0.001). No correlation was observed between the SUV and the ADC. Conclusion In early-stage ENKTL, nasopharyngeal MR showed a lower sensitivity and a similar specificity when compared with 18F-FDG PET/CT. PET/MR showed similar performance compared with PET/CT

    Napredak u istraživanju polisaharida izoliranih iz gljive vrste Cordyceps

    Get PDF
    Cordyceps sinensis (Berk.) Sacc. is one of the well-described fungi that has been used in traditional Chinese medicine for over 700 years. Fungal mycelia contain some polysaccharides that are responsible for their biological activity. C. sinensis has traditionally been cultivated on the high Tibetan plateau as a parasitic fungus growing on caterpillars. However, currently it is being cultivated on some insects and in artificial media. This article deals with the advances in the production, isolation and purification of Cordyceps polysaccharide (CP) in recent years, as well as the structure elucidation and pharmacological action. The article also aims to provide some references for further application and exploitation in the future.Cordyceps sinensis (Berk.) Sacc. jedna je od dobro poznatih gljiva što se više od 700 godina koristi u tradicionalnoj kineskoj medicini. Micelij gljive sadrži polisaharide koji utječu na njezinu biološku aktivnost. C. sinensis se tradicionalno uzgaja na Tibetanskom platou kao parazitska gljiva na gusjenicama leptira, a može se uzgajati i na ličinkama drugih insekata ili na umjetnoj podlozi. U radu se istražuje napredak postignut posljednjih godina u proizvodnji, izolaciji, pročišćavanju, strukturnoj analizi i procjeni farmakološkog djelovanja polisaharida iz gljive Cordyceps. Također je prikazan pregled referencija potrebnih za buduća istraživanja i primjenu tih polisaharida
    corecore