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Abstract. Using non-rigid-foldable origami patterns to design mechanical metamaterials could 13 

potentially offer more versatile behaviors than the rigid-foldable ones, but their applications are 14 

limited by the lack of analytical framework for predicting their behavior. Here, we propose a 15 

theoretical model to characterize a non-rigid-foldable square-twist origami pattern by its rigid origami 16 

counterpart. Based on the experimentally observed deformation mode the square-twist, a virtual 17 

crease was added in the central square to turn the non-rigid-foldable pattern to a rigid-foldable one. 18 

Two possible deformation paths of the non-rigid-foldable pattern were calculated through kinematic 19 

analysis of its rigid origami counterpart, and the associated energy and force were derived 20 

analytically. Using the theoretical model, we for the first time discovered that the non-rigid-foldable 21 

structure bifurcated to follow a low-energy deformation path, which was validated through 22 

experiments. Furthermore, the mechanical properties of the structure could be programmed by the 23 

geometrical parameters of the pattern and material stiffness of the creases and facets. This work thus 24 

paves the way for development of non-rigid-foldable origami-based metamaterials serving for 25 

mechanical, thermal, and other engineering applications. 26 
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 30 

 31 

1. Introduction 32 

Advances in the rational design of metamaterials have enabled exotic and desirable mechanical 33 

properties that are inaccessible with conventional materials owing to their properly engineered 34 

repeating microstructures [1-14]. Origami, which transforms 2D materials into intricate 3D structures, 35 

is able to provide a geometric design approach often independent of scale and base material, and 36 

hence offers a promising platform for the design of metamaterials. The special mechanical properties 37 

that have been achieved include a negative and tunable Poisson’s ratio [15, 16]; infinite stretching 38 

and bulk moduli [17]; bi- and multi-stability [18-23]; a programmable mechanical properties [24-28]; 39 

tunable stiffness and response [29, 30]; self-locking [18, 31]; shock and impact mitigation [32,33]; 40 

and superior energy and impact force absorption [34-37].  41 

 42 

Existing origami metamaterials are predominantly developed from rigid-foldable origami patterns, 43 

represented by the well-known Miura-ori [15, 16, 35, 38-41] and its derivatives [17, 34, 36, 42] 44 

because of the simplicity of their geometric design, yet elegant kinematic property of rigid foldability 45 

with a single degree of freedom. Folding of rigid-foldable patterns is characterized by purely rotation 46 

about the creases without deformation from the facets. As a result, the folding process of a given 47 

pattern and associated rotation of each crease can be analytically derived by numerous approaches, 48 

such as the quaternions and dual quaternions [43], the matrix method [44], and kinematic theory [45]. 49 

Taking advantage of the theoretical model, the mechanical properties of the origami metamaterials 50 

can be readily predicted and further programmed by varying the geometry and the base material 51 

property [15, 18, 22, 31, 34, 35, 38]. Meanwhile, even with facet deformation during folding, non-52 

rigid-foldable patterns can also be utilized to design origami structures and metamaterials [46]. In 53 

comparison with rigid origami, it offers a much larger collection of crease patterns, and hence could 54 

lead to wider and more versatile potential applications. However, it is very difficult to predict the 55 



3 
 

motion of non-rigid-foldable origami analytically due to the simultaneous deformation along creases 56 

and within facets, and thus, developing a better and more predictive understanding on non-rigid-57 

foldable origami remains a challenge. Overcoming this hurdle will result in novel mechanical 58 

metamaterials with programmable properties. 59 

 60 

Here our attention is on a remarkable origami example known as the ‘square-twist’ tessellation, 61 

proposed first by Kawasaki and Yoshida [47], whose rigid foldability is decided not only by the 62 

geometry parameters but also the assignment of mountain and valley creases [48]. There are four 63 

known types of square-twist pattern with different crease assignments [49, 50], two non-rigid-64 

foldable ones (type 1 and 2 in Fig. 1A and B) and two rigid-foldable ones (type 3 and 4 in Fig. 1C 65 

and D) [48, 51], whose rigidity is analyzed by the kinematic method based on the motion transmission 66 

path [52]. The type 1 pattern was found to have a hidden degree of freedom and bi-stability [46], 67 

which was recently employed to design origami-equivalent compliant mechanism [53], frequency 68 

reconfigurable origami antenna [54], and mechanical energy storage [55]. For the type 2 pattern, it 69 

was known that placing an additional diagonal crease on the central square facet resulted in a rigid-70 

foldable pattern with a single degree of freedom [56], referred to as type 2M (modified type 2) 71 

hereafter in the paper (Fig. 4A). A mathematical model was developed to study the kinematics of the 72 

pattern with a special twist angle of 45°, from which multiple folding paths were observed [57]. In a 73 

recent study, the authors explicitly derived the kinematic equations for the generalized type 2M 74 

pattern with an arbitrary twist angle [52]. Nevertheless, little work has been published on the 75 

mechanical properties of the type 2 square-twist.  76 

 77 

In this paper, we propose a theoretical model to investigate the mechanical properties of the non-78 

rigid-foldable type 2 square-twist pattern and further program its properties using its rigid-foldable 79 

counterpart type 2M as a reference model. The outline of this paper is as follows. A uniaxial 80 

experiment on the type 2 pattern is presented in Section 2. In section 3 a theoretical model for the 81 
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type 2 pattern is built based on kinematic analysis result of the type 2M one. The theoretical model is 82 

validated by experiments and further utilized to program the mechanical properties of the pattern in 83 

Section 4. An important bifurcation behavior of the pattern is also discussed in this section. Finally a 84 

conclusion is given in Section 5 which ends the paper. 85 

 86 

2. Uniaxial tension experiment  87 

The type 2 square-twist pattern is composed of a central square facet, four trapezoidal ones and four 88 

rectangular ones, with the mountain-valley crease arrangement and folded configuration shown in 89 

Fig. 1B. It is parameterized by two side lengths, l and a, and a twist angle, α. For theoretical 90 

characterization of the non-rigid-foldable pattern, determination of the deformation mode is a 91 

prerequisite. Folding and unfolding of a cardboard model indicated that besides rotation of the 92 

creases, the central square seemed to be noticeably bent whereas all the other facets were nearly flat. 93 

To quantify the deformation of the central square, a uniaxial tension experiment in the diagonal 94 

direction was conducted on a type 2 specimen. The experimental setup is shown in Fig. 2A. The 95 

experiment was conducted on a horizontal testing machine developed in house to avoid the influence 96 

of gravity. The machine had a load cell of 50N with an accuracy of 0.5% and a stroke of 80mm. The 97 

specimen was attached to the machine using two fixtures. The left one was fixed on the load cell, 98 

whereas the right one on a support had a rotational degree of freedom to allow the specimen to rotate 99 

about the x axis. Moreover, a hinge was connected to each fixture to enable rotation of the specimen 100 

about the y axis. The specimen was tensioned by a displacement of 32.96mm at the loading rate of 101 

0.2mm/s to eliminate dynamic effects. The deformation process of the experiments was recorded 102 

using a standard digital camera (Canon 70D) at 25 frames per second. The exact deformed 103 

configuration of the central square facet was captured by a digital image correlation (DIC) system 104 

CSI Vic-3D9M with a camera resolution of 2704×3384 pixels at a frame time interval of 500ms. 105 

 106 
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The specimen shown in Fig. 2B was fabricated from polyethylene terephthalate (PET) of thickness 107 

t=0.5mm using a Trotec Speedy 300 laser cutter. The geometry of the specimen was selected as 108 

a=25mm, l=25mm, and α=30º. The creases were cut as dotted lines of 2mm perforations at 1mm 109 

intervals and then folded by hand to form the origami structure. The central square was painted with 110 

black speckles for DIC capture. 111 

 112 

 113 

Fig. 1. Crease arrangements, geometric parameters, deployed and folded configurations of (A) type 114 

1, (B) type 2, (C) type 3, and (D) type 4 square-twist units, where side lengths a=25mm, l=25mm, 115 

and twist angle α=30º. The mountain and valley creases are described by black and blue dotted lines, 116 

respectively. 117 

 118 
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 119 

Fig. 2. Uniaxial tension experiment. (A) Experimental setup. The horizontal testing machine 120 

consists of a load cell, displacement control, and data acquisition systems. (B) Details of the 121 

specimen and fixtures. The creases were cut as 2mm×0.3mm perforations at 1mm intervals. The 122 

specimen, whose measured area was marked by red lines, was connected to the two fixtures by 123 

hinges. 124 

 125 

The experimental result of the type 2 specimen is shown in Fig. 3. Four configurations of the specimen 126 

with tension displacement Δx=0mm, 4.84mm, 15.48mm, and 21.12mm, are shown in Fig. 3A as 127 

representatives. It is observed that during tension, facet rotation about the creases dominates, whilst 128 

the central square facet always bends and unbends along diagonal A–C (also in Supplementary Video 129 

S1). Then the exposed areas of the square enclosed in the red quadrilateral regions are geometrically 130 

reconstructed using DIC and subsequently fit it with single-curved surfaces with the following 131 

polynomial governing equations  132 

( )I 0f x =  (1a) 133 

( ) 6 4 5 3 2 2 2 2

II 1.61 10 3.23 10 1.11 10 1.76 10 3.72 10f x x x x x− − − − −= −  −  +  +  − 
 (1b) 

134 

( ) 6 4 5 3 2 2 2 1

III 2.26 10 3.16 10 1.36 10 1.47 10 3.61 10f x x x x x− − − − −=  −  +  −  − 
 (1c) 

135 

( ) 6 4 5 3 2 2 3 1

IV 5.36 10 2.00 10 1.17 10 8.10 10 3.06 10f x x x x x− − − − −=  −  +  −  − 
 (1d) 

136 
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As shown in Fig. 3B, a good match between the experimental result and fitting surface is obtained in 137 

all four configurations, with the fitting error calculated in Fig. 3C being within half of the material 138 

thickness in over 90% of the measured area. Hence, we have proven experimentally that the central 139 

square of the type 2 pattern is subjected to bending with a single curvature, based on which we will 140 

build a theoretical model to characterize its mechanical behavior.  141 

 142 

 143 

Fig. 3. Reconstructed central squares (measured area) using digital image correlation. (A) 144 

Configuration of the specimen at four representative tension displacements. The central square was 145 

painted with speckles for DIC and the exposed area of the square enclosed in the red quadrilateral 146 

region was captured. (B) Geometrically reconstructed central squares (measured area) using DIC and 147 

best-fit polynomial single-curved surfaces (Eq. 1). (C) The pie graphs of the errors between the 148 

experimental results and fitting surfaces indicate that in all four configurations, the fit error is within 149 

half of the material thickness, t, in over 90% of the measured area. 150 

 151 

3. Theoretical modelling 152 

As mentioned in the Introduction, deformation of origami structures made of rigid-foldable patterns 153 

comes only from rotation of creases, the dihedral angles of which can be theoretically derived. 154 

Consequently, the elastic energy of the structure can be easily calculated by adding up the energy in 155 

each crease [16]. For theoretical characterization of the non-rigid-foldable type 2 pattern, however, 156 
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two major challenges arise, i.e., how to obtain the dihedral angles of the creases and how to calculate 157 

the bending energy of the deformed central square. The existing simulations for deformable facets 158 

are using bar-and-hinge models [58] or pin-jointed bar framework models [59] to provide an 159 

approximation for the bending behavior. Here, we adopt the approach adding a virtual diagonal crease 160 

between vertices B and D on the central square so as to derive the dihedral angles of all the creases 161 

from the kinematic model of the type 2M pattern in Fig. 4A, and to quantify the bending energy of 162 

the central square as rotation energy of the virtual crease.  163 

 164 

Taking the notations as shown in Fig. 4A, the dihedral angles of all the 13 creases, as well as the 165 

diagonal tension displacement, can be determined by only one input dihedral angle, which is set as 166 

φ4, from the kinematic model recently developed by the authors [52] (detailed mathematical equations 167 

in Supplementary Section 1). The kinematic research in ref [52] shows that arbitrary φ4 corresponds 168 

to one φi (i=1, 2, 3, 7, 8, 9, 10) and two different values of φj (j=5, 6, 11, 12, 13), which implies that 169 

there are two kinematic paths between the fully folded and deployed configurations of type 2M 170 

pattern. The kinematic relationship of φ6 and φ4 is drawn in Fig. 4B, together with six representative 171 

configurations I-VI during unfolding. The two distinct paths of the kinematic model are bifurcated at 172 

the point in red where φ4=φ6=105.54º (configurations IV1 and IV2). However, we observe penetration 173 

of the facets on kinematic path 2 between the fully folded and bifurcation configurations, which is 174 

exemplified by configuration II2 in Fig. 4B. This is important as it implies that when the pattern is 175 

unfolded, it may not be able to follow kinematic path 2 because of physical interference. Hence, there 176 

are two kinematically admissible paths to unfold it: one is path 1 throughout, and the other is path 1 177 

first, followed by a switch to path 2 at the point where the paths bifurcate.  178 

 179 
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 180 

Fig. 4. Kinematics and theoretical energy of the type 2M unit. (A) Crease arrangement, notation of 181 

dihedral angles, and the folded and deployed configurations of the type 2M pattern. The mountain, 182 

valley, and virtual creases are described by black, blue dotted and red dotted lines, respectively. (B) 183 

Two different kinematic paths of the type 2M pattern together with six representative configurations 184 

on each path. The configurations (I1 II1 III1 IV1 V1 VI1) represent the unfolding sequence on path 1; 185 

(I2 II2 III2 IV2 V2 VI2) represent the unfolding motion on path 2. Rectangular facets in the same colour 186 

(dark or light blue) are parallel during motion. (C) Normalized theoretical elastic energy Ut/kl vs. φ4 187 

of the type 2M pattern. 188 

 189 

Using the dihedral angles determined above, the elastic energy, Ut, of the type 2 pattern during 190 

unfolding along either kinematic path can be calculated as the summation of the energy of the twelve 191 

original creases, Uc, and that of the virtual crease on the central square, Us. 192 

( ) ( )
12

2 2

t c s ,0 s s s,0

1

1 1

2 2
i i i i

i

U U U k L k L   
=

= + =  − +  −  (2) 

In which ki, Li, φi and φi,0 are, respectively, the torsional elastic constant per unit length along the 193 

crease, length of the crease, dihedral angle and natural dihedral angle in the undeformed state for the 194 
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i-th crease, whilst k′, Ls, φs and φs,0 are the corresponding parameters of the virtual crease. Using 195 

equation (2), the elastic energy of a type 2 pattern following each kinematic path is calculated, 196 

normalized by kl, and drawn against normalized tension displacement Δx/l in Fig. 4C (detailed 197 

derivation in Supplementary Section 1). The geometry of the pattern is selected as α=30º, a=l, 198 

φ4,0=0º, and the ratio k′/k is set to 8 in order to exemplify the difference between the two paths. It can 199 

be seen that the elastic energy of kinematic path 2 is higher than that of path 1 prior to the bifurcation 200 

point and becomes lower than that of path 1 afterward. Theoretically, when a structure is loaded, the 201 

low-energy deformation path will be followed. Therefore, the theoretical model predicts that the type 202 

2 pattern will initially follow path 1 and then bifurcate to follow path 2, which has not been reported 203 

in origami structures of its kind.  204 

 205 

It is worth mentioning that equation (2) is valid only when the creases have a linear elastic torque 206 

versus rotation angle relationship, and modifications are required should a different constitutive 207 

relationship be adopted. 208 

 209 

4. Results and discussions 210 

4.1 Validation of the theoretical model 211 

To validate the theoretical model derived in Section 3, we first built and tested a rigid-foldable type 212 

2M specimen. The specimen had identical geometric parameters with the type 2 one in Fig. 3A except 213 

for the additional crease at the central square, and was manufactured and tensioned in the same 214 

manner. The experimental results are presented in Fig. 5A (deformation process in Supplementary 215 

Video S2). The force is measured directly from the experiment and the energy is obtained by 216 

integration of the force over the displacement.  217 

 218 

Then the theoretical total energy of the specimen following the two kinematic paths are calculated 219 

and differentiated with respect to tension displacement to obtain force. In the calculation, the natural 220 
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dihedral angle φ4,0=40º is measured from the specimen, whereas the others are derived based on the 221 

kinematic model. An elastic-perfectly plastic model is found to be able to realistically model the 222 

relationship between crease torque and rotation angle. The torsional elastic constant and yield rotation 223 

angle are determined as k=k′=0.76N·rad-1 and Δφy=15.23º based on experiment and curve fitting 224 

(Supplementary Section 2). Correspondingly, equation (2) is modified as follows to calculate the total 225 

energy of the type 2M specimen 226 

( )
13

2

t y y ,0 y

1

1

2
i i i

i

U k L     
=

 
=   +  − − 

 
  (3) 

 227 

The theoretically derived normalized total energy, Ut/(kl), and normalized force, F/k, are drawn 228 

against normalized displacement Δx/l in together with the experimental ones in Fig. 5A. Note that 229 

before the bifurcation point, only the energy and force on kinematic path 1 are calculated, because 230 

kinematic path 2 in this range is inaccessible in experiments owing to physical interference. As 231 

expected, the experimental curves bifurcate and follow the low-energy deformation path throughout 232 

loading. One discrepancy, however, is that the tiny force drops at bifurcation point in the theoretical 233 

curve is not observed in the experimental curve, possibly because the magnitude of the force drop is 234 

too small. 235 

 236 

Subsequently we validate the model by comparing the experimental and theoretical results for the 237 

non-rigid-foldable type 2 specimen in Fig. 3A with a natural dihedral angle of φ4,0=30º. The same 238 

procedure as in the case of the type 2M pattern is followed expect for that the torsional stiffness of 239 

the virtual crease needs to be determined. According to the digital image correlation result, the central 240 

square remains elastic during loading, and therefore the virtual crease is deemed linear elastic with a 241 

torsional constant k′=1.11N·rad-1 calculated based on the bending stiffness of the central square 242 

(Supplementary Section 2). Consequently, the theoretical total energy can be calculated by 243 

modification of equation (2) as follows 244 
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( ) ( )
12

22

t y y ,0 y s s s,0

1

1 1

2 2
i i i

i

U k L k L      
=

 
=   + − − +  − 

 
  (5) 

Then the force can also be derived by differentiation of the energy against displacement. 245 

 246 

The theoretical and experimental results are presented in Fig. 5B. Again a reasonable agreement is 247 

achieved, especially with respect to the four feature points I–IV on the force curve. In addition, the 248 

theoretical force reaches a local maximum (point III) at the bifurcation point and then drops. This is 249 

because the virtual diagonal crease starts to unbend when the structure reaches its bifurcation 250 

configuration, which releases elastic energy and causes a drop in the force. Notice that the drop is not 251 

as dramatic in the experiment due to that the limited rigidity of the facets makes them deform 252 

simultaneously with the creases. Therefore, we can conclude that we have solved the two challenges 253 

for theoretical characterization of the non-rigid-foldable pattern. Our analytical model, which 254 

combines kinematics and mechanics, can accurately predict the mechanical behaviors of the type 2 255 

square-twist pattern. 256 

 257 

 258 

Fig. 5. Theoretical and experimental normalized energy Ut/(kl) and normalized force F/k versus 259 

normalized displacement Δx/l for (A) the type 2M specimen with the natural dihedral angle φ4,0=40º, 260 

and (B) the type 2 specimen with the natural dihedral angle φ4,0=30º. Bifurcation of the theoretical 261 
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curves occurs at φ13=94.12º. Note that the natural dihedral angle of the unloaded physical specimen 262 

is affected by the pattern adopted; therefore, the type 2M and 2 specimens have different values for 263 

Δx/l. The red shade described the repeatability of the experimental results of several specimens. 264 

 265 

4.2 Stability of deformation path 266 

It has been shown that if undisturbed during loading, both type 2M and type 2 patterns will follow 267 

the low-energy path. However, it would be interesting to know if initially placed on the high energy 268 

path, whether it will follow it or drop to the low-energy one. To investigate this, we fabricated a type 269 

2M specimen with two voids of 9.50mm by 16.50mm (inset of Fig. 6) to eliminate physical 270 

interferences. This made the branch of kinematic path 2 before bifurcation point physically reachable, 271 

leading to four possible deformation modes: path 1 throughout deformation; path 1 followed by path 272 

2; path 2 followed by path 1, and path 2 throughout. Then four experiments were conducted on the 273 

specimen, and the experimental paths in terms of φ6 versus φ4 were measured and presented in Fig. 274 

6. Specifically, in experiment 1, the specimen was set initially on kinematic path 1 and tensioned 275 

without disturbance. It moved on path 1 up to the bifurcation point and then dropped to kinematic 276 

path 2. In experiment 2, the specimen was also on kinematic path 1 initially. Immediately after it 277 

bifurcated to path 2, we manually adjusted it back to kinematic path 1 and then applied further tension. 278 

However, the specimen did not stay on kinematic path 1 and quickly dropped to kinematic path 2. 279 

Experiments 3 and 4 respectively followed the procedures of experiments 1 and 2, but started from a 280 

configuration on kinematic path 2. In both cases, the specimen quickly dropped to the low-energy 281 

path (i.e., path 1 prior to and path 2 after the bifurcation point). Those experimental findings agree 282 

with theoretical analysis. Moreover, the results imply that the origami structure will follow a stable 283 

deformation path that is insensitive to perturbation, which make it better adaptive to various work 284 

conditions. 285 

 286 
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 287 
Fig. 6. Two kinematic paths and four experimental paths of a type 2M specimen with two voids. In 288 

the experiments, the initial dihedral angle φ4,0=45º. 289 

 290 

4.3 Programmability of the type 2 pattern 291 

Using our theoretical model, we can readily program the mechanical response of the type 2 pattern 292 

by simply changing the material and geometrical parameters. This is demonstrated by calculating and 293 

comparing the energy and force of a series of structures with varying parameters. In the calculation, 294 

the same elastic-perfectly plastic original creases, linear elastic virtual crease, and natural dihedral 295 

angle φ4,0=30º as those for the type 2 specimen in Fig. 3A are adopted. And the displacement is 296 

normalized by the maximum displacement, Δxmax, in all the curves for convenient comparison. The 297 

material parameter that we investigate is the ratio of the torsional stiffness of the virtual crease, which 298 

is essentially the bending stiffness of the central square, to that of the original creases. The energy 299 

and force curves of five models with identical α=30º and a/l=1, but different k′/k values ranging from 300 

1 to 16, are presented in Fig. 7A. It can be seen that as the ratio increases, both the energy and force 301 

increase. This is because at higher torsional stiffness, more energy is required to deform the central 302 

square, thereby lifting the force barrier to reach bifurcation. Furthermore, the decrease in force at the 303 

bifurcation point becomes larger, and a negative force occurs when k′/k surpasses 5.04. The condition 304 

for the existence of a negative force is analyzed in Supplementary Section 3. Briefly, this phenomenon 305 

is best explained by the variation in the bending energy of the central square. It has been shown in 306 
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Fig. 5B that the unbending of the central square after bifurcation releases elastic energy and leads to 307 

a drop in the force. As shown in the second diagram of Fig. 7A, the ratio of the central square bending 308 

energy to the crease energy, Us/Uc, increases with k′/k. When k′/k>5.04, the energy release in the 309 

central square is greater than the energy increase in the original creases, leading to a reduction in the 310 

total energy of the structure and a corresponding negative force. Therefore, the mechanical properties 311 

and behavior of the structure can be programmed simply by tuning the bending stiffness of the central 312 

square facet.  313 

 314 

The geometric parameters also influence the behavior of the structure. A comparison of five models 315 

with α in the range of 25º–45º, k′/k=1 and a/l=1 indicates that increasing the twist angle lowers the 316 

initial peak force but raises the force barrier to the bifurcation point (Fig. 7B). Decreasing a/l, which 317 

means keeping the size of the central square constant while shortening the facets around it, reduces 318 

the entire force level owing to the decrease in the crease lengths, see the results in Fig. 7C from five 319 

models with a/l ranging from 1/4 to 4 while α=30º and k′/k=1. The force drop in the bifurcation point 320 

becomes more pronounced with decreasing a/l because of the higher bending energy of the central 321 

square facet.  322 

 323 

This programmability through the pattern geometry and material allows various mechanical functions 324 

to be achieved in the origami structure. For example, to design an ideal impact energy absorption 325 

device, which requires a long and flat plateau [60], smaller values of k′/k and α, and larger value of 326 

a/l should be selected to minimize the force drop at the bifurcation point. The third diagram shown 327 

in Fig. 7C shows nearly perfect force plateaus when k′/k=1 and α=30º. The height of the plateaus 328 

increases with the ratio a/l. 329 

 330 
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 331 

Fig. 7. The effects of (A) the stiffness ratio k′/k, (B) the twist angle α, and (C) the side length ratio a/l 332 

on the mechanical properties of the type 2 pattern derived from the theoretical model. The normalized 333 

energy, Ut/(kl), ratio of the central square bending energy to the crease energy, Us/Uc, and normalized 334 

force, F/k, were calculated from the theoretical model of Eq. 5, where k is the torsional elastic constant 335 

of the elastic-perfectly plastic original creases, and k′ is the torsional elastic constant of the elastic 336 

virtual crease. The normalized displacement, Δx/Δxmax, of the bifurcation is equal to 0.47 in (A), 337 

ranges from 0.47 to 0.48 in (B), and have a minimum value of 0.47 when a=l in (C). 338 

 339 

5. Conclusion 340 

In conclusion, we have developed a theoretical model for a non-rigid-foldable square-twist pattern to 341 

achieve predictable programmable mechanical behavior, based on the kinematic analysis results of 342 

its rigid-foldable counterpart. We have demonstrated theoretically and experimentally that the non-343 

rigid-foldable pattern bifurcates during tension so as to always follow the low-energy path. This 344 
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feature has not been reported previously for origami structures. With the model, we are also able to 345 

accurately program the mechanical properties of the origami structure by tuning the geometry of the 346 

pattern and/or mechanical properties of the creases and the central square facet. Altogether, this work 347 

enables the use of non-rigid-foldable origami patterns in the design of mechanical metamaterials with 348 

theoretically predictive behavior.  349 

 350 

Based on the approach we proposed here, for the general non-rigid origami pattern, it is possible to 351 

find its rigid counterpart by introducing virtual creases. Yet, there is no ready solution for every non-352 

rigid pattern. Kinematic and mechanical experiments and analysis have to be conducted case by case 353 

to allocate the virtual creases. For complicated patterns, there could be multiple choices for the virtual 354 

creases corresponding to different base materials and boundary conditions. Next, we will extend the 355 

type 2 square-twist studied here to metamaterials with combination of square-twist pattern of different 356 

types. The properties of metamaterials will be programmed by tuning the units in whole or 357 

individually, which will offer a platform to achieve metamaterials with variable properties in much 358 

wider regions.  359 
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