46 research outputs found

    Vitamin C Mitigates Oxidative Stress and Tumor Necrosis Factor-Alpha in Severe Community-Acquired Pneumonia and LPS-Induced Macrophages

    Full text link
    Oxidative stress is an important part of host innate immune response to foreign pathogens. However, the impact of vitamin C on oxidative stress and inflammation remains unclear in community-acquired pneumonia (CAP). We aimed to determine the effect of vitamin C on oxidative stress and inflammation. CAP patients were enrolled. Reactive oxygen species (ROS), DNA damage, superoxide dismutases (SOD) activity, tumor necrosis factor-alpha (TNF-α), and IL-6 were analyzed in CAP patients and LPS-stimulated macrophages cells. MH-S cells were transfected with RFP-LC3 plasmids. Autophagy was measured in LPS-stimulated macrophages cells. Severe CAP patients showed significantly increased ROS, DNA damage, TNF-α, and IL-6. SOD was significantly decreased in severe CAP. Vitamin C significantly decreased ROS, DNA damage, TNF-α, and IL-6. Vitamin C inhibited LPS-induced ROS, DNA damage, TNF-α, IL-6, and p38 in macrophages cells. Vitamin C inhibited autophagy in LPS-induced macrophages cells. These findings indicated that severe CAP exhibited significantly increased oxidative stress, DNA damage, and proinflammatory mediator. Vitamin C mitigated oxidative stress and proinflammatory mediator suggesting a possible mechanism for vitamin C in severe CAP

    Having a Same Type IIS Enzyme’s Restriction Site on Guide RNA Sequence Does Not Affect Golden Gate (GG) Cloning and Subsequent CRISPR/Cas Mutagenesis

    No full text
    Golden gate/modular cloning facilitates faster and more efficient cloning by utilizing the unique features of the type IIS restriction enzymes. However, it is known that targeted insertion of DNA fragment(s) must not include internal type IIS restriction recognition sites. In the case of cloning CRISPR constructs by using golden gate (GG) cloning, this narrows down the scope of guide RNA (gRNA) picks because the selection of a good gRNA for successful genome editing requires some obligation of fulfillment, and it is unwanted if a good gRNA candidate cannot be picked only because it has an internal type IIS restriction recognition site. In this article, we have shown that the presence of a type IIS restriction recognition site in a gRNA does not affect cloning and subsequent genome editing. After each step of GG reactions, correct insertions of gRNAs were verified by colony color and restriction digestion and were further confirmed by sequencing. Finally, the final vector containing a Cas12a nuclease and four gRNAs was used for Agrobacterium-mediated citrus cell transformation. Sequencing of PCR amplicons flanking gRNA-2 showed a substitution (C to T) mutation in transgenic plants. The knowledge derived from this study could widen the scope of GG cloning, particularly of gRNAs selection for GG-mediated cloning into CRISPR vectors

    Digital Gene Expression Analysis of Ponkan Mandarin (Citrus reticulata Blanco) in Response to Asia Citrus Psyllid-Vectored Huanglongbing Infection

    No full text
    Citrus Huanglongbing (HLB), the most destructive citrus disease, can be transmitted by psyllids and diseased budwoods. Although the final symptoms of the two main HLB transmission ways were similar and hard to distinguish, the host responses might be different. In this study, the global gene changes in leaves of ponkan (Citrus reticulata) mandarin trees following psyllid-transmission of HLB were analyzed at the early symptomatic stage (13 weeks post inoculation, wpi) and late symptomatic stage (26 wpi) using digital gene expression (DGE) profiling. At 13 wpi, 2452 genes were downregulated while only 604 genes were upregulated in HLB infected ponkan leaves but no pathway enrichment was identified. Gene function analysis showed impairment in defense at the early stage of infection. At late stage of 26 wpi, however, differentially expressed genes (DEGs) involved in carbohydrate metabolism, plant defense, hormone signaling, secondary metabolism, transcription regulation were overwhelmingly upregulated, indicating that the defense reactions were eventually activated. The results indicated that HLB bacterial infection significantly influenced ponkan gene expression, and a delayed response of the host to the fast growing bacteria might be responsible for its failure in fighting against the bacteria
    corecore