17 research outputs found

    Using stochastic acceleration to place experimental limits on the charge of antihydrogen

    Full text link
    Assuming hydrogen is charge neutral, CPT invariance demands that antihydrogen also be charge neutral. Quantum anomaly cancellation also demands that antihydrogen be charge neutral. Standard techniques based on measurements of macroscopic quantities of atoms cannot be used to measure the charge of antihydrogen. In this paper, we describe how the application of randomly oscillating electric fields to a sample of trapped antihydrogen atoms, a form of stochastic acceleration, can be used to place experimental limits on this charge

    Experimental and computational study of the injection of antiprotons into a positron plasma for antihydrogen production

    Get PDF
    One of the goals of synthesizing and trapping antihydrogen is to study the validity of charge-parity-time symmetry through precision spectroscopy on the anti-atoms, but the trapping yield achieved in recent experiments must be significantly improved before this can be realized. Antihydrogen atoms are commonly produced by mixing antiprotons and positrons stored in a nested Penning-Malmberg trap, which was achieved in ALPHA by an autoresonant excitation of the antiprotons, injecting them into the positron plasma. In this work, a hybrid numerical model is developed to simulate antiproton and positron dynamics during the mixing process. The simulation is benchmarked against other numerical and analytic models, as well as experimental measurements. The autoresonant injection scheme and an alternative scheme are compared numerically over a range of plasma parameters which can be reached in current and upcoming antihydrogen experiments, and the latter scheme is seen to offer significant improvement in trapping yield as the number of available antiprotons increases

    Autoresonant-spectrometric determination of the residual gas composition in the ALPHA experiment apparatus

    Get PDF
    Knowledge of the residual gas composition in the ALPHA experiment apparatus is important in our studies of antihydrogen and nonneutral plasmas. A technique based on autoresonant ion extraction from an electrostatic potential well has been developed that enables the study of the vacuum in our trap. Computer simulations allow an interpretation of our measurements and provide the residual gas composition under operating conditions typical of those used in experiments to produce, trap, and study antihydrogen. The methods developed may also be applicable in a range of atomic and molecular trap experiments where Penning-Malmberg traps are used and where access is limited
    corecore