10 research outputs found

    Mini-Review on the Synthesis of Furfural and Levulinic Acid from Lignocellulosic Biomass

    No full text
    Efficient conversion of renewable biomass into value-added chemicals and biofuels is regarded as an alternative route to reduce our high dependence on fossil resources and the associated environmental issues. In this context, biomass-based furfural and levulinic acid (LA) platform chemicals are frequently utilized to synthesize various valuable chemicals and biofuels. In this review, the reaction mechanism and catalytic system developed for the generation of furfural and levulinic acid are summarized and compared. Special efforts are focused on the different catalytic systems for the synthesis of furfural and levulinic acid. The corresponding challenges and outlooks are also observed

    Underwater Wavelength Attack on Discrete Modulated Continuous-Variable Quantum Key Distribution

    No full text
    The wavelength attack utilizes the dependence of beam splitters (BSs) on wavelength to cause legitimate users Alice and Bob to underestimate their excess noise so that Eve can steal more secret keys without being detected. Recently, the wavelength attack on Gaussian-modulated continuous-variable quantum key distribution (CV-QKD) has been researched in both fiber and atmospheric channels. However, the wavelength attack may also pose a threat to the case of ocean turbulent channels, which are vital for the secure communication of both ocean sensor networks and submarines. In this work, we propose two wavelength attack schemes on underwater discrete modulated (DM) CV-QKD protocol, which is effective for the case with and without local oscillator (LO) intensity monitor, respectively. In terms of the transmittance properties of the fused biconical taper (FBT) BS, two sets of wavelengths are determined for Eve’s pulse manipulation, which are all located in the so-called blue–green band. The derived successful criterion shows that both attack schemes can control the estimated excess noise of Alice and Bob close to zero by selecting the corresponding condition parameters based on channel transmittance. Additionally, our numerical analysis shows that Eve can steal more bits when the wavelength attack controls the value of the estimated excess noise closer to zero

    Noiseless Attenuation for Continuous-Variable Quantum Key Distribution over Ground-Satellite Uplink

    No full text
    Satellite-based quantum key distribution (QKD) has lately received considerable attention due to its potential to establish a secure global network. Associated with its application is a turbulent atmosphere that sets a notable restriction to the transmission efficiency, which is especially challenging for ground-to-satellite uplink scenarios. Here, we propose a novel noiseless attenuation (NA) scheme involving a zero-photon catalysis operation for source preparation to improve the performance of continuous-variable (CV) QKD over uplink. Numerical analysis shows that the NA-based CV-QKD, under attenuation optimization, outperforms the traditional CV-QKD, which is embodied in extending the allowable zenith angle while improving the effective communication time. Attributing to characteristics of the attenuation optimization, we find that the NA-involved source preparation improves the security bound by relatively reducing the amount of information available to eavesdroppers. Taking the finite-size effect into account, we achieve a tighter bond of security, which is more practical compared with the asymptotic limit

    Suppression of Fading Noise in Satellite-Mediated Continuous-Variable Quantum Key Distribution via Clusterization

    No full text
    The satellite-mediated continuous-variable quantum key distribution (CV-QKD) protocol, which relies on off-the-shelf telecommunication components, has the potential for a global quantum communication network with all-day operation. However, the transmittance fluctuation of satellite-mediated links leads to the arriving quantum state showing non-Gaussian property, introducing extra fading noise in security analysis and limiting the secret key rate of the protocol. Here, we consider the clusterization method for data post-processing to suppress the fading noise in both downlink and uplink scenarios, where the measurement data are divided into several clusters, and we perform security analysis separately. In particular, we set the optimal upper and lower bounds of each cluster in terms of the probability distribution of transmittance (PDT), while finding an optimal cluster number for the trade-off between fading noise and the composable finite-size effect. Numerical analysis shows that the proposed method can improve the composable finite-size rate when the fading noise is large enough, even with only two clusters. Moreover, a high-speed CV-QKD system with a higher frequency of signal preparation and detection can extend the proposed method to work in the case of lower fading noise

    ICH mortality in Inner Mongolia in eastern and western

    No full text
    <p>The mortality rate from 2009 to 2012 in eastern were:109.48/100000,123.87/100000,126.11/100000, 141.85/100000. In western were: 36.57/100000, 55.01/100000, 53.56/100000, 36.33/100000</p
    corecore