52 research outputs found

    Rapamycin Attenuated Zinc-Induced Tau Phosphorylation and Oxidative Stress in Rats: Involvement of Dual mTOR/p70S6K and Nrf2/HO-1 Pathways

    Full text link
    Alzheimer's disease is pathologically characterized by abnormal accumulation of amyloid-beta plaques, neurofibrillary tangles, oxidative stress, neuroinflammation, and neurodegeneration. Metal dysregulation, including excessive zinc released by presynaptic neurons, plays an important role in tau pathology and oxidase activation. The activities of mammalian target of rapamycin (mTOR)/ribosomal S6 protein kinase (p70S6K) are elevated in the brains of patients with Alzheimer's disease. Zinc induces tau hyperphosphorylation via mTOR/P70S6K activation in vitro. However, the involvement of the mTOR/P70S6K pathway in zinc-induced oxidative stress, tau degeneration, and synaptic and cognitive impairment has not been fully elucidated in vivo. Here, we assessed the effect of pathological zinc concentrations in SH-SY5Y cells by using biochemical assays and immunofluorescence staining. Rats (n = 18, male) were laterally ventricularly injected with zinc, treated with rapamycin (intraperitoneal injection) for 1 week, and assessed using the Morris water maze. Evaluation of oxidative stress, tau phosphorylation, and synaptic impairment was performed using the hippocampal tissue of the rats by biochemical assays and immunofluorescence staining. The results from the Morris water maze showed that the capacity of spatial memory was impaired in zinc-treated rats. Zinc sulfate significantly increased the levels of P-mTOR Ser2448, P-p70S6K Thr389, and P-tau Ser356 and decreased the levels of nuclear factor erythroid 2-related factor-2 (Nrf2) and heme oxygenase-1 (HO-1) in SH-SY5Y cells and in zinc-treated rats compared with the control groups. Increased expression of reactive oxygen species was observed in zinc sulfate-induced SH-SY5Y cells and in the hippocampus of zinc-injected rats. Rapamycin, an inhibitor of mTOR, rescued zinc-induced increases in mTOR/p70S6K activation, tau phosphorylation, and oxidative stress, and Nrf2/HO-1 inactivation, cognitive impairment, and synaptic impairment reduced the expression of synapse-related proteins in zinc-injected rats. In conclusion, our findings imply that rapamycin prevents zinc-induced cognitive impairment and protects neurons from tau pathology, oxidative stress, and synaptic impairment by decreasing mTOR/p70S6K hyperactivity and increasing Nrf2/HO-1 activity

    Leaf size of woody dicots predicts ecosystem primary productivity

    Get PDF
    A key challenge in ecology is to understand the relationships between organismal traits and ecosystem processes. Here, with a novel dataset of leaf length and width for 10 480 woody dicots in China and 2374 in North America, we show that the variation in community mean leaf size is highly correlated with the variation in climate and ecosystem primary productivity, independent of plant life form. These relationships likely reflect how natural selection modifies leaf size across varying climates in conjunction with how climate influences canopy total leaf area. We find that the leaf sizeā€“primary productivity functions based on the Chinese dataset can predict productivity in North America and vice-versa. In addition to advancing understanding of the relationship between a climate-driven trait and ecosystem functioning, our findings suggest that leaf size can also be a promising tool in palaeoecology for scaling from fossil leaves to palaeo-primary productivity of woody ecosystems

    Direct and indirect effects of climate on richness drive the latitudinal diversity gradient in forest trees

    Get PDF
    Data accessibility statement: Full census data are available upon reasonable request from the ForestGEO data portal, http://ctfs.si.edu/datarequest/ We thank Margie Mayfield, three anonymous reviewers and Jacob Weiner for constructive comments on the manuscript. This study was financially supported by the National Key R&D Program of China (2017YFC0506100), the National Natural Science Foundation of China (31622014 and 31570426), and the Fundamental Research Funds for the Central Universities (17lgzd24) to CC. XW was supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB3103). DS was supported by the Czech Science Foundation (grant no. 16-26369S). Yves Rosseel provided us valuable suggestions on using the lavaan package conducting SEM analyses. Funding and citation information for each forest plot is available in the Supplementary Information Text 1.Peer reviewedPostprin

    Research on Key Technologies of Mode Multiplexing / Demultiplexing

    No full text
    The rapid growth of Internet capacity has driven the continuous progress of optical fiber communication technology. The transmission capacity of the current optical fiber communication system is close to the limit of single-mode optical fiber transmission. The mode-division multiplexing technology based on few-mode optical fiber can increase the communication capacity exponentially, which is the current research hotspot. Mode multiplexing and demultiplexing are one of the key technologies to realize modular division multiplexing. This paper expounds the existing mode multiplexing / demultiplexing schemes and their corresponding research progress, and discusses the current problems and future development application prospects of optical fiber communication module division multiplexing technologies

    Community Structure and Soil Mineral Concentration in Relation to Plant Invasion in a Subtropical Urban and Rural Ecotone

    No full text
    Alien species invasion affects local community biodiversity and stability considerably, and ecosystem services and functions will accordingly be dramatically changed. Many studies have reported a correlation between invasibility and the chemical nature of soil, but the influences of understory plant community structure and soil trace element concentrations on invasibility have not been fully explored. Landscape heterogeneity in the urban and rural ecotone may alter the invasion process, and assessing the invasibility of different types of native forests may lead to a better understanding of the mechanisms by which native species resist invasion. We compared the composition, structure, diversity and stability of the understory community in abandoned fallows, severely invaded by Mikania micrantha and Borreria latifolia, and adjacent natural and planted forests in the urban and rural ecotone of Eastern Guangzhou, China. Additionally, we quantified mineral element concentrations in the topsoil (0ā€“25 cm) most influenced by the root system of understory communities in the forest stand types. Abandoned fallows had the highest concentrations of available ferrum (Fe) and available boron (B) and the lowest concentration of total mercury (Hg) Hg among the three stand types. In contrast to various species diversity indices, the understory structure of the three stands better explained differences in community invasibility. Average understory cover significantly differed among the three stand types, and those types with the greatest number of stems in height and cover classes 1 and 2 differed the most, indicating that seedling establishment may deter invasion to a certain extent. CCA (canonical correspondence analysis) results better reflected the distribution range of each stand type and its relationship with environmental factors, and available Fe, available B, exchangeable calcium (Ca), exchangeable magnesium (Mg), cover, available copper (Cu) and total Hg , were strongly related the distribution of native and exotic understory species. Invasion weakened community stability. The stability index changed consistently with the species diversity index, and abandoned fallows understory community stability was lower than the other stand types. According to our results, both soil mineral element concentrations and community structure are related to alien species invasion. Against the backdrop of urbanization and industrialization, this information will provide forest management and planning departments with certain reference points for forest protection and invasive plant management

    Community Attributes Predict the Relationship between Habitat Invasibility and Land Use Types in an Agricultural and Forest Landscape

    No full text
    Finding ecosystem or community level indicators for habitat invasibility may provide natural resource managers with environmentally friendly measures to control alien plant invasion; yet, ecosystem invasibility remains understudied. Here, we investigated alien plant invasion into various ecosystems representing different land use types in a subtropical peri-urban area of south China. Four invasive alien species were found from five out of the six ecosystems. Lower plant diversity in both the overstory and understory was consistently associated with more severe alien plant invasion to the ecosystems. The highest total abundance and plot occurrence of the invasive plants were found in the agroforestry ecosystem representing the highest disturbance. At plot scale, an increase in invasion severity was associated with a significant decrease in overstory stem density, species richness, and diversity, but with a significant increase in overstory plant dominance. The understory community attributes in response to the increase in invasion severity followed similar patterns, except that the stem density increased with invasion severity. Higher canopy openness and thus lower leaf area index and greater understory radiation were associated with higher invasion severity of invasive plants to the understory habitat. For predicting total abundance of the invasive species, the most important variable is land use type, while for the abundance of Lantana camara and Mikania micrantha, the most important predictor variable is overstory Berger–Parker index and canopy openness, respectively. Canopy structure and understory gap light regimes were among the most important factors determining the abundance of the worst invasive plant Mikania micrantha. Our results demonstrate that land use types with varying disturbance regimes determine the spatial heterogeneity in plant diversity and community structure, which predicts alien plant invasion and habitat invasibility; and that the severity of alien plant invasion in turn is a good indicator of habitat disturbance across the ecosystems

    Explicating the Cognitive Process of a Physician’s Trust in Patients: A Moderated Mediation Model

    No full text
    Trust is considered a critical factor in the physician–patient relationship. However, little is known about the development and impact of physicians trusting their patients. A model that is premised on the integrated model of organizational trust was proposed in this article to reveal the cognitive processes involved in physicians’ trust, with perceived integrity and the ability of the patient as antecedents and the physicians’ communication efficacy as the outcome. A cross-sectional survey of 348 physicians in Zhejiang province, China, revealed that a physician’s trust in a patient mediated the relationship between the physicians’ perception of the integrity and ability of the patient, and the physician’s communication efficacy. The physicians’ educational backgrounds and work experience were also found to moderate an indirect effect: a lower level of education and longer work experience intensified the impact of the perceived integrity and ability of the patient on the physician’s trust, while shorter work experience made the association between the physician’s trust and communication efficacy more salient. This paper provided implications for both physician and patient sides

    Temporal Changes in Community Structure over a 5-Year Successional Stage in a Subtropical Forest

    No full text
    In the context of global warming, the changes of forest structure, diversity, and productivity along with forest succession have always been a topic of interest for many researchers. Studying the changes in community structure, biomass, and diversity of different diameter at breast height (DBH) classes in subtropical mountainous forests during forest succession can provide data in support of future forest succession predictions and forest management. We analyzed the changes of three DBH classes in a 10-ha plot while studying subtropical mountainous forest succession in 2012 and 2017. The results showed that during forest succession, the community abundance and richness significantly decreased while biomass increased slightly. Among the three DBH classes, changes were the greatest in small trees, followed by large trees, and then medium-sized trees. The abundance, biomass, richness, and Shannon–Wiener index of small trees all decreased significantly. In forests with medium-sized trees, biomass decreased significantly and abundance did not change significantly. In large trees, abundance and biomass increased significantly. Changes were observed in environmental driving factors during forest succession. In 2012, driving factors with significant effects included total phosphorus, transmitted direct solar radiation, organic matter, and capillary water capacity. In 2017, two driving factors were total phosphorus and total potassium while the main driving factor was still total phosphorus. The results showed that during forest succession the abundance and diversity of small trees were principal components of community abundance and diversity. A reduction in small-tree abundance and diversity will decrease community abundance and diversity. Large-tree biomass was a principal component of community biomass; accumulation of large-tree biomass will increase community biomass. Schima superba Gardner and Champ. and Castanopsis carlesii (Hemsl.) Hayata are the main dominant species in this area, which can quickly form stable communities. S. superba is also a fire-resistant tree species. Therefore, in natural forest management, planting of S. superba and C. carlesii in the secondary bare land can be considered. In addition, the evergreen broad-leaved forest can be recovered to the forest structure and productivity level before selective cutting, which provides important inspiration for forest management in the region

    A Fusion Water Quality Soft-Sensing Method Based on WASP Model and Its Application in Water Eutrophication Evaluation

    No full text
    Water environment protection is of great significance for both economic development and improvement of peopleā€™s livelihood, where modeling of water environment evolution is indispensable in water quality analysis. However, many water quality indexes related to water quality model cannot be measured online, and some model parameters always vary among different water areas. Thus, this paper proposes a water quality soft-sensing method based on the water quality mechanism model to simulate evolution of water quality indexes online, where unscented Kalman filter is utilized to estimate model parameters. Furthermore, a modified fuzzy comprehensive evaluation method is presented to evaluate the level of water eutrophication condition. Finally, the water quality data collected from Taihu Lake and Beihai Lake are used to validate the effectiveness and generality of the proposed method. The results show that the proposed soft-sensing method is able to describe the variation of related water quality indexes, with better accuracy compared to nonlinear least squares based method and traditional trial-and-error based method. On this basis, the water eutrophication condition can be also accurately evaluated
    • ā€¦
    corecore