91 research outputs found

    Learning A Coarse-to-Fine Diffusion Transformer for Image Restoration

    Full text link
    Recent years have witnessed the remarkable performance of diffusion models in various vision tasks. However, for image restoration that aims to recover clear images with sharper details from given degraded observations, diffusion-based methods may fail to recover promising results due to inaccurate noise estimation. Moreover, simple constraining noises cannot effectively learn complex degradation information, which subsequently hinders the model capacity. To solve the above problems, we propose a coarse-to-fine diffusion Transformer (C2F-DFT) for image restoration. Specifically, our C2F-DFT contains diffusion self-attention (DFSA) and diffusion feed-forward network (DFN) within a new coarse-to-fine training scheme. The DFSA and DFN respectively capture the long-range diffusion dependencies and learn hierarchy diffusion representation to facilitate better restoration. In the coarse training stage, our C2F-DFT estimates noises and then generates the final clean image by a sampling algorithm. To further improve the restoration quality, we propose a simple yet effective fine training scheme. It first exploits the coarse-trained diffusion model with fixed steps to generate restoration results, which then would be constrained with corresponding ground-truth ones to optimize the models to remedy the unsatisfactory results affected by inaccurate noise estimation. Extensive experiments show that C2F-DFT significantly outperforms diffusion-based restoration method IR-SDE and achieves competitive performance compared with Transformer-based state-of-the-art methods on 33 tasks, including deraining, deblurring, and real denoising.Comment: 9 pages, 8 figure

    Flexible Riser Configuration Design for Extremely Shallow Water With Surrogate-Model- Based Optimization

    Get PDF
    The aim of this paper is to study the optimization design of a steep wave configuration based on a surrogate model for an extremely shallow water application of a flexible riser. As the traditional technique of riser configuration design is rather time-consuming and exhaustive due to the nonlinear time domain analysis and large quantities of load cases, it will be challenging when engineers address an extreme design, such as the configuration design in the case of extremely shallow water. To avoid expensive simulations, surrogate models are constructed in this paper with the Kriging model and radial basis function (RBF) networks by using the samples obtained by optimal Latin hypercubic sampling (LHS) and time domain analysis in a specified design space. The RBF model is found to be easier to construct and to show better accuracy compared with the Kriging model according to the numerical simulations in this work. On the basis of the RBF model, a hybrid optimization is performed to find the minimum curvature design with corresponding engineering constraints. In addition, an optimized design is found to meet all of the design criteria with high accuracy and efficiency, even though all of the samples associated with construction of the surrogate model fail to meet the curvature criterion. Thus, the technique developed in this paper provides a novel method for riser configuration design under extreme conditions

    Apolipoprotein E Overexpression Is Associated With Tumor Progression and Poor Survival in Colorectal Cancer

    Get PDF
    Apolipoprotein E (ApoE) plays a key role in tumorigenesis and progression, such as cell proliferation, angiogenesis and metastasis. ApoE overexpression was associated with aggressive biological behaviors and poor prognosis in a variety of tumor according to previous studies. This study aimed to assess the prognostic value and explore the potential relationship with tumor progression in colorectal cancer (CRC). We collected the expression profiling microarray data from the Gene Expression Omnibus (GEO), investigated the ApoE expression pattern between the primary CRC and liver metastasis of CRC, and then explored the gene with prognostic significance based on the TCGA database. ApoE high expression was associated with poor overall survival (OS, p = 0.015) and progression-free survival (PFS, p = 0.004) based on the public databases. Next, ApoE expression was evaluated in two CRC cohorts by immunohistochemistry, of whom 306 cases were stage II and 201 cases were metastatic liver CRC. In the cohort of the liver metastasis, the ApoE expression was increasing in normal mucosa tissue, primary colorectal cancer (PC), and colorectal liver metastases (CLM) in order. Meanwhile, the level of ApoE expression in stage II tumor sample which had no progression evidence in 5 years was lower than that in PC of synchronous liver metastases. The high ApoE expression in PC was an independent risk factor in both stage II (HR = 2.023, [95% CI 1.297–3.154], p = 0.002; HR = 1.883, [95% CI 1.295-2.737], p = 0.001; OS and PFS respectively) and simultaneous liver metastasis (HR = 1.559, [95% CI 1.096–2.216], p = 0.013; HR = 1.541, [95% CI 1.129–2.104], p = 0.006; OS and PFS respectively). However, the overexpression of ApoE could not predict the benefit from the chemotherapy in stage II. The study revealed that the relevance of the ApoE overexpression in CRC progression, conferring a poor prognosis in CRC patients especially for stage II and simultaneous liver metastasis. These finding may improve the prognostic stratification of patients for clinical strategy selection and promote CRC clinic outcomes

    Combined QTL and Genome Scan Analyses With the Help of 2b-RAD Identify Growth-Associated Genetic Markers in a New Fast-Growing Carp Strain

    Get PDF
    Common carp is one of the oldest and most popular cultured freshwater fish species both globally and in China. In a previous study, we used a carp strain with a long breeding tradition in China, named Huanghe, to create a new fast-growing strain by selection for fast growth for 6 years. The growth performance at 8 months of age has been improved by 20.84%. To achieve this, we combined the best linear unbiased prediction with marker-assisted selection techniques. Recent progress in genome-wide association studies and genomic selection in livestock breeding inspired common carp breeders to consider genome-based breeding approaches. In this study, we developed a 2b-RAD sequence assay as a means of investigating the quantitative trait loci in common carp. A total of 4,953,017,786 clean reads were generated for 250 specimens (average reads/specimen = 19,812,071) with BsaXI Restriction Enzyme. From these, 56,663 SNPs were identified, covering 50 chromosomes and 3,377 scaffolds. Principal component analysis indicated that selection and control groups are relatively clearly distinct. Top 1% of Fst values was selected as the threshold signature of artificial selection. Among the 244 identified loci, genes associated with sex-related factors and nutritional metabolism (especially fat metabolism) were annotated. Eighteen QTL were associated with growth parameters. Body length at 3 months of age and body weight (both at 3 and 8 months) were controlled by polygenic effects, but body size (length, depth, width) at 8 months of age was controlled mainly by several loci with major effects. Importantly, a single shared QTL (IGF2 gene) partially controlled the body length, depth, and width. By merging the above results, we concluded that mainly the genes related to neural pathways, sex and fatty acid metabolism contributed to the improved growth performance of the new Huanghe carp strain. These findings are one of the first investigations into the potential use of genomic selection in the breeding of common carp. Moreover, our results show that combining the Fst, QTL mapping and CRISPR–Cas9 methods can be an effective way to identify important novel candidate molecular markers in economic breeding programs

    A Critical Review of Data-Driven Transient Stability Assessment of Power Systems: Principles, Prospects and Challenges

    No full text
    Transient stability assessment (TSA) has always been a fundamental means for ensuring the secure and stable operation of power systems. Due to the integration of new elements such as power electronics, electric vehicles and renewable power generations, dynamic characteristics of power systems are becoming more and more complex, which makes TSA an increasingly urgent task. Since traditional time-domain simulations and direct method cannot meet the actual operation requirements of power systems, data-driven TSA has attracted growing attention from both academia and industry. This paper makes a comprehensive review from the following four aspects: feature extraction and selection, model construction, online learning and rule extraction; and then, summarizes the challenges and prospects for future research; finally, draws the conclusions of this review. This review will be beneficial for relevant researchers to better understand the research status, key technologies, and existing challenges in the field

    Influence Analysis of Transmission Lines on a Stable Non-Foster-Loaded Electrically Small Dipole

    No full text
    Non-Foster-loaded antennas have the advantages of compact size and large bandwidth. Meanwhile, they suffer from two issues: internal instability and simulation inaccuracy resulting from distribution parameters. The most commonly used stability analysis method for microwave circuits, Rollett’s criteria, is not suitable for negative impedance circuits. This paper has explained the reason and proposed an effective method for stability analysis. Transmission lines between lumped components are found to be a main reason of inaccurate simulations, which is analyzed in this paper, and it is concluded that their influence also exists at hundreds of megahertz. In order to solve this problem and improve simulation accuracy, circuit and electromagnetic cosimulation is conducted. Finally, a 320 mm dipole loading with a negative capacitor is fabricated to verify the analysis. Simulated and measured results indicate that the proposed stability analysis is effective and the simulation accuracy is significantly improved. The matched dipole achieves less than −10 dB reflection coefficient from 30 MHz to 580 MHz. Furthermore, a 14 dB gain improvement is obtained in electrically small condition
    corecore