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Flexible Riser Configuration
Design for Extremely Shallow
Water With Surrogate-Model-
Based Optimization
The aim of this paper is to study the optimization design of a steep wave configuration
based on a surrogate model for an extremely shallow water application of a flexible riser.
As the traditional technique of riser configuration design is rather time-consuming and
exhaustive due to the nonlinear time domain analysis and large quantities of load cases,
it will be challenging when engineers address an extreme design, such as the configura-
tion design in the case of extremely shallow water. To avoid expensive simulations, surro-
gate models are constructed in this paper with the Kriging model and radial basis
function (RBF) networks by using the samples obtained by optimal Latin hypercubic sam-
pling (LHS) and time domain analysis in a specified design space. The RBF model is
found to be easier to construct and to show better accuracy compared with the Kriging
model according to the numerical simulations in this work. On the basis of the RBF
model, a hybrid optimization is performed to find the minimum curvature design with cor-
responding engineering constraints. In addition, an optimized design is found to meet all
of the design criteria with high accuracy and efficiency, even though all of the samples
associated with construction of the surrogate model fail to meet the curvature criterion.
Thus, the technique developed in this paper provides a novel method for riser configura-
tion design under extreme conditions. [DOI: 10.1115/1.4033491]

1 Introduction

Riser configuration design is typically a time-consuming and
exhaustive task due to the requirements of nonlinear simulations
in the time domain and a large number of load cases and paramet-
ric studies. More specifically, global analysis must be performed
throughout the whole stage to obtain the displacement and force
resultants that are caused by internal and external loads. In addi-
tion, the nonlinear time domain method is usually required in the
global analysis because of the many load and structure nonlinear-
ities, such as hydrodynamic loads, nonlinear material or geometry
effects, and seafloor contacts [1,2]. Typically, hundreds of load
cases derived from the combinations of waves, currents, and
floater motions should be analyzed, and sensitivity studies are also
required for some environmental parameters to build a proper
load matrix [2]. Based on the above techniques, parametric studies
on riser configurations are needed to find a feasible configuration
[3–6]. Therefore, the number of design variables determines the
difficulty of the task of designing riser configurations, e.g., a lazy
wave design with three design variables may result in thousands
of geometric configurations that must be analyzed [3]. Obviously,
by means of the traditional design techniques mentioned above, it
would be more difficult when the design meets extreme condi-
tions, such as extremely shallow water (depth< 50 m), ultradeep
water (depth> 1500 m), or severe sea states, because the feasible
design domains are usually too narrow to find a feasible design in
extreme cases. Even worse, more severe challenges may be faced

when engineers address an urgent design, such as in the case of an
oil-spill incident combined with extreme conditions.

Most of the previous studies have focused on the design of riser
configurations in deep water. However, the challenges are cer-
tainly not reduced and could be very different when the design is
performed in extremely shallow water [7]. The challenges may be
derived from strong currents, large waves, variations in product
density, marine growth, and so on. In particular, typical configura-
tions, including a lazy/steep-S and lazy/steep wave, will approxi-
mate or exceed their compliancy capabilities to the vessel motions
in extremely shallow water. As a result, some new configurations
have been developed for flexible risers in shallow water applica-
tions, such as the multiwave [7], tensioning mechanism system
[8], and weight added wave [9] configurations. However, the
application of new configurations may be involved with other
problems, e.g., a longer design cycle, more expensive qualifica-
tion, and higher risks. Meanwhile, the potential of the typical con-
figurations mentioned above tends to not be fully utilized due to
the time-consuming traditional design methodology. Therefore,
the purpose of this work is to exploit the potential of the typical
configurations, especially the steep wave riser configuration, to
efficiently cope with a flexible riser configuration design in
extremely shallow water. In addition, the optimization technique
is introduced in this work to accelerate the design process and
obtain better performances of the flexible riser.

Optimization of riser configurations was first introduced by
Larsen, who used a genetic algorithm (GA) in a static analysis
program for a steel catenary riser (SCR) configuration design
[10]. Later, similar works were performed to develop the GA
[11–14] and other algorithms for the riser configuration design,
such as an artificial immune system and particle swarm optimiza-
tion [15–17]. However, all of these works are based on static anal-
ysis because the time domain dynamic analysis for risers is too
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expensive to be performed during the configuration optimization.
To consider the dynamic behavior of risers during the optimiza-
tion process, Tanaka and de Arruda Martins performed optimiza-
tion with frequency domain dynamic analysis [18,19]. Martins
et al. performed time domain simulation in a computer cluster
with 1376 cores in total, with only four load cases considered
[20]. In summary, the optimization techniques developed to date
are not adequate for a practical riser configuration design.

Surrogate models, also known as metamodels, were initially
developed as surrogates of the expensive simulation processes to
improve the overall computation efficiency [21]. Surrogate mod-
els have recently been introduced into ocean engineering design
[22–29]. The main purpose of using these techniques in riser con-
figuration design is to represent the dynamic responses of risers
by means of a mathematical approximation model instead of per-
forming the time domain analysis, so that the design or optimiza-
tion is very efficient. Guarize et al. trained neural networks to
replace the time domain analysis of risers and anchor lines; this
approach followed the “surrogate” idea [30]. Yang and Zheng
applied the surrogate model in the optimization design of deep
water SCR optimization design using the Kriging model [31].
However, the use of surrogate models is still not adequate in riser
configuration design and optimization. As a result, additional
attempts are required to verify its efficiency and reliability. In the
future, this technique may become a powerful methodology for
riser configuration design; its potential is demonstrated in this
manuscript.

In this work, surrogate-model-based optimization is performed
to implement a riser configuration design in extremely shallow
water. The engineering background is an oil spill from a sea floor
leak in shallow water with a depth of 27 m. The solution for this
incident is to collect the spilled oil from the sea floor and transport
it to the sea surface using a system that is like a catenary anchor
leg mooring system, as shown in Fig. 1. A riser should be
designed to connect the seabed oil collection device to the surface
container. Obviously, it is difficult to find a feasible solution for
the riser configuration in such an extremely shallow water applica-
tion with very limited time. The steep wave is selected to be the
riser configuration for this system. However, many attempts to
achieve a feasible configuration design for the engineering task
have failed because of the very narrow feasible domain in this
extreme application. In the practical design process, the dynamic
curvatures are found to be too large under the extreme load condi-
tions, occurring at the hog bend of the configurations that cannot
be eliminated by bend stiffeners.

Therefore, we develop an optimization model that seeks the
configuration with minimum curvature. The curvature of interest
is the maximum dynamic value obtained from the hog bend of
each configuration. Four key geometric parameters are taken as
the design variables, and the ranges of the responses are used as

the constraints including tension, hang-off angle, seabed clear-
ance, and length redundancy. The surrogate models representing
the relationship between the design variables and dynamic
responses are constructed using the Kriging model and RBF net-
works, based on samples from optimal LHS processes and time
domain analyses, respectively. The RBF model shows better accu-
racy than the Kriging model based on the model validation in this
research. Therefore, a hybrid optimization based on the RBF
model is performed combined with the multi-island GA (MIGA)
[32] and nonlinear programing by quadratic Lagrangian (NLPQL)
[33]. Finally, the optimization result is verified by time domain
analysis, in which we determine that the accuracy and efficiency
of the optimization model are both satisfactory.

2 Problem Description

A steep wave configuration is achieved by a hanging pipe with
several buoyancy modules distributed along its intermediate seg-
ment and a fixed touch-down point. Generally, the design of a
steep wave configuration involves the length design of each seg-
ment of the riser, the fixed position on the seabed, and the buoy-
ancy modules including the net buoyancy, number, and
distributions. Seven of the abovementioned design variables are
needed to form a tremendous design space, making it difficult to
explore an optimum design in practice. Even using some mathe-
matical programing, it is still difficult to consider all of the design
variables at one time. Therefore, simplification of the steep wave
design is necessary. Assuming that the buoyancy modules are pre-
determined and that the riser segment where the buoyancy mod-
ules are distributed is equivalent to a uniform pipe segment
according to the overall weight and buoyancy, the number of
design variables is reduced to four, as shown in Fig. 2. These
design variables are upper catenary length L1, buoyancy segment
length L2, lower catenary length L3, and the horizontal distance
between the hang-off point and the touch-down point P.

The large number of load cases is another challenging problem for
the design of riser configurations, which has not been satisfactorily
solved in most of the previous works. One of the important reasons
is that the critical failure modes in some load cases may differ from
other load cases, e.g., the main failure model of risers at a far position
is tensile failure, whereas it is overbending or clashing at a near posi-
tion. Nevertheless, it is usually found that only a few cases are criti-
cal for the design of the riser configuration in the preliminary stage,
which makes the optimization design of the riser configuration feasi-
ble. In the above system, the critical load case for the steep wave
riser is the near position with the wave and current collinear, where
the riser suffers a large bending moment and faces a great risk of in-
terference with the seabed. Based on our design experiences, other
cases may be taken into account by means of providing redundancy
in the length and margins for the constraints during the optimization.

Fig. 1 Solution for the oil-spill incident Fig. 2 Design variables for the steep wave configuration
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Therefore, the steep wave model is built using the parameters
described in Table 1. The riser is hinged at both ends in the analy-
sis model because two bend stiffeners will be designed to prevent
possible overbending at the ends.

3 Optimization Model

As previously described, the design of a steep wave configura-
tion for risers is simplified and can be converted into an optimiza-
tion problem involving the search for the configuration with the
minimum dynamic curvature under the constraints of other crite-
ria. The target curvature C is required to be less than 0.25 rad/m,
as derived from the minimum bending radius (MBR) criterion of
the given flexible pipe. Next, the ranges of the design variables,
constraints, and optimization formulae are specified.

3.1 Range of Design Variables. Considering the geometry of
the steep wave configuration, the following ranges for the design
variables are adopted preliminarily based on engineering specifi-
cations and experience:

15 m � L1 � 30 m

8 m � L2 � 12 m

3 m � L3 � 12 m

10 m � P � 40 m

8>><
>>:

(1)

3.2 Constraints. All of the design criteria, except the maxi-
mum curvature criterion (the optimization objective), are taken as
constraints. The constraint range setting may include the consider-
ation of some margins to include the numerical errors and some
uncertainties of load cases. Four constraints and their ranges are
considered as follows:

� Maximum dynamic tension T: The dynamic tension range
can be determined from a testing calculation.

� Maximum hang-off angle h: This constraint is based on the
hinged model of the riser ends; the range is assumed to not
interfere with the floater, and no overbending is assumed to
occur if a bend stiffener is added.

� Minimum clearance between the riser sag bend and seabed
d: The minimum clearance is set to be greater than a given
value to avoid interference with the seabed and is set to be
less than a given value to maintain a proper distance from
the sea surface.

� Length redundancy DL. This parameter is introduced to
ensure that the total length of the risers is sufficient; the
length redundancy can be expressed as

DL ¼ L1 þ L2 þ L3 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðPþ 2 � offsetÞ2 þ H2

max

q
(2)

where Hmax is the maximum distance between the riser hang-off
point and the seabed in the extreme condition, and offset is the
floater offset.

Therefore, the ranges of these constraints are set as follows after
consideration of the above factors and based on some engineering
experience:

0 kN � T � 30 kN

0 deg � h � 75 deg

2 m � d � 12 m

1 m � DL � 20 m

8>><
>>:

(3)

3.3 Optimization Formulation. Hence, the optimization
model of the steep wave configuration design can be stated as
follows:

To find L1; L2;L3;P

min:CðL1; L2;L3;PÞ

s:t:

TL � T � TU

hL � h � hU

dL � d � dU

DLL � DL � DLU

8>>>>><
>>>>>:

(4)

where L1, L2, L3, P, C, T, h, d, and DL are defined as above. The
subscripts L and U denote the lower and upper bounds of the con-
straints, respectively, and their values are also specified in Eq. (3).

4 Construction of the Surrogate Model

As the time domain simulations of the dynamic responses are
too expensive to be performed directly during the optimization of
the riser configurations, a surrogate model is utilized to simulate
the design variables/responses relationships based on some sample
points. The basic formulation of the surrogate model can be
expressed as follows:

fpðxÞ ¼ f̂ ðxÞ þ eðxÞ (5)

where fp is the true response at design point x, f̂ is the model esti-
mation, and eðxÞ is the error in the surrogate model.

There are several approaches that can be used to construct the
surrogate model, such as polynomial regression, the Kriging
model, and RBF. Considering that the polynomial model is less
accurate for highly nonlinear problems [21], we use the Kriging
and RBF models in this work.

4.1 Kriging Model. The Kriging model was initially devel-
oped to determine the true ore-grade distributions based on sample
ore grade in the 1950s [34]. It is useful in predicting temporally
and spatially correlated data. The main idea of the Kriging model
is to use its basic formulation to estimate the value of a response
at some unsampled location. The ordinary estimating determinis-
tic function of the Kriging model can be stated as [35]

f ðxÞ ¼ lþ eðxÞ; EðeÞ ¼ 0 (6a)

covðeðxðiÞÞ; eðxðjÞÞÞ 6¼ 0; 8i; j (6b)

where l is the mean of the response at sampled design points, and
e is the error with zero expected value. A correlation function of a
generalized distance is used between the sample data points,
which determines the accuracy of the model.

Let f̂ ðxÞ be an approximation model. When the mean squared
error between f ðxÞ and f̂ ðxÞ is minimized, f̂ ðxÞ becomes

f̂ ðxÞ ¼ l̂ þ rTðxÞR�1ðf � ûiÞ (7)

where l̂ is the estimated value of l, R�1 is the inverse of correla-
tion matrix R, r is the correlation vector, f is the observed data

Table 1 Parameters for the configuration design

Parameter Value

Water depth (m) 27
Outside diameter of L1 and L3 (mm) 180
Weight of L1 and L3 in air (kg/m) 37
Outside diameter of L2 (mm) 418
Weight of L2 in air (kg/m) 50
Floater offset (m) 5
Floater draft (m) 3
Maximum wave height (m) 8.8
Wave period (s) 8.6
Surface current speed (m/s) 1
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with n sample data, and i is the vector with n components of 1.
For the possible correlation structure of R, interested reader may
refer to Refs. [35,36].

4.2 RBF Model. The RBF approximation is a type of neural
network employing one hidden layer of radial units and an output
layer of linear units that is capable of a universal approximation
[37], as shown in Fig. 3. And the basic formulation is expressed as
follows:

f ðxÞ ¼
XN

i¼1

wihiðxÞ þ ei (8)

where w is the coefficients of the linear combinations, hiðxÞ is the
basis functions, ei is the independent errors with variance r2, and
N is the number of the RBFs. There are many forms of function
for hiðxÞ, including Gaussian, reflected sigmoidal, inverse multi-
quadrics, and power spline. Then, the RBF model can be
expressed as F ¼ Hw, where H is a N�M matrix of RBFs hiðxÞ,
and the coefficients w are given by w ¼ H�1F, which is calculated
from the training samples.

Generally, a surrogate model can be constructed by four key
steps: design of the experiment, simulation of selected samples,
construction of the model, and model validation.

4.3 Design of the Experiment. To obtain a highly accurate
surrogate model, the optimal LHS approach is applied. In addition,
300 sample points are obtained preliminarily. The samples from the
optimal LHS cover the design space well without replication and
are distributed uniformly and randomly [38,39]. Large quantities of
these samples do not satisfy the length redundancy constraint and
were removed at this stage. Finally, 152 sample points remained for
the subsequent simulation. A three-dimensional distribution can be
observed from Fig. 4, and other combinations of the four design var-
iables are distributed similarly and are omitted here.

4.4 Simulation of the Selected Samples. Numerical simula-
tion is performed using the batch process of Orcaflex [40] on the
samples that were previously obtained. The regular wave
approach [1,2] is used to reduce the computation cost. The total
time for running the 152 samples is less than 6 hrs with a 4-core
Intel i5 central processing unit (CPU) computer. The following
responses are obtained to construct the surrogate model: the maxi-
mum dynamic curvature, tension, hang-off angle, and minimum
clearance between the sag bend.

The samples whose responses fail to meet the remaining con-
straints are removed to filter out the bad samples before construct-
ing the surrogate model; 114 samples satisfying all of the
specified constraints are retained. However, all of them fail to
meet the curvature criterion (C� 0.25 rad/m), as shown in Fig. 5.
This result indicates the difficulty of designing a riser configura-
tion in extremely shallow water, because a satisfactory design
cannot be found by a random and uniform sampling strategy (opti-
mal LHS).

4.5 Construction and Validation. The Kriging and RBF
models are constructed based on the samples and corresponding
responses obtained above. They are constructed using Isight 5.0,
an integration platform for a simulation-based design process
[41].

The Gaussian correlation function is chosen to construct the
Kriging model. It is expressed as

corrðxðiÞ; xðjÞÞ ¼
Y

ehk jxðiÞ � xðjÞj2 (9)

where hk is the correlation parameter, which is obtained by maxi-
mizing the likelihood estimation.

Isight uses a variable power spline RBF that can be tuned to ap-
proximate a large number of other functions and is given byFig. 3 Traditional RBF networks

Fig. 4 Selected samples from the optimal LHS

Fig. 5 Samples’ curvature responses
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hðxÞ ¼ kx� xikc (10)

where kx� xik is the Euclidian distance. c is a shape function
variable between 0.2 and 3, which is optimized for a minimum of
the errors for N� 1 data points.

Next, a comparison of the models’ accuracy is performed to
find a better model for this design task. To assess the quality of
the surrogate model, the cross validation (CV) scheme [42] is
used in this work to perform the error analysis, in which the sam-
ple data are divided into subsets; and one set is removed from

training to act as the testing set at a given time. In addition, 10
points from the total samples are used for the testing. The R2 value
in the CV scheme is used to validate and compare the two con-
structed models. The value of R2 closer to 1 indicates that a higher
accuracy of approximation is achieved. The R2 values from the
two models are listed in Table 2.

According to Table 2, the RBF approach provides a better
approximation for this problem. The Kriging approach presumes
the global functional form and identifies the maximum likelihood
estimators, so it is typically difficult to obtain and use [21]. In
addition, the RBFs are known as local approximation networks as
they are composed of a number of elements that primarily con-
sider the approximation regarding a specific area of the input
space [43]; as a result, they can provide arbitrarily good approxi-
mations to a prescribed function of a finite number of real varia-
bles [37]. As the dynamic behaviors of a steep wave riser in
extremely shallow water are very sensitive to the design parame-
ters and the implicit function might be highly nonlinear and multi-
modal, local model approaches such as RBF are easier to
construct.

Table 2 R2 value comparison of the Kriging and RBF models

Response R2 of Kriging model R2 of RBF model

Max. curvature, C 0.75 0.95
Max. effective tension, T 0.75 0.97
Max. hang-off angle, h 0.87 0.98
Min. seabed clearance, d 0.92 0.99
Total length redundancy, DL 0.89 0.99

Fig. 6 Variables versus curvatures of the RBF model: (a) L1, L2 versus curvature, (b) L1, L3 versus curvature, (c) L1, P versus
curvature, and (d) L3, P versus curvature
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Based on the above analysis, the RBF model is selected as the
surrogate model to perform the subsequent optimization for the riser
configuration. Some three-dimensional graphs of the RBF model
between the variables and curvature responses are shown in
Figs. 6(a)–6(d). It is clear that the curvature is not a monotone func-
tion of the variables and may have several extreme values in the
design space. This observation indicates that the optimization
design is difficult to perform using the traditional gradient-based
design method. Moreover, a global algorithm is required to perform
the optimization while avoiding a local optimum.

5 Optimization

5.1 Optimization Strategy. A hybrid optimization strategy,
which is composed of two classical algorithms that are applied
sequentially in two steps, is used in this study. First, the MIGA
[32] is used to find an approximate solution, which is the global
optimum of the model. Next, NLPQL [33] is performed using the
solution obtained by MIGA. MIGA is a well-known global opti-
mization algorithm that has better efficiency than the traditional
GA, but the calculation time would be increased remarkably if a
higher accuracy was required. Thus, the combination of the
MIGA and an efficient gradient algorithm such as NLPQL will
simultaneously improve the possibility of finding the global opti-
mum and the efficiency. The optimization is also achieved using
Isight 5.0 [41].

We can see from Table 3 that a global optimal design is suc-
cessfully found by MIGA, starting from the 0 point of each design
variable, but it is an approximate solution and the curvature does
not satisfy the criterion (MBR< 0.25 rad/m). After the NLPQL
optimization, an accurate and satisfactory design is obtained. The
running time of the entire optimization process is approximately
13 mins and 24 s using an Intel i5 3.20 GHz CPU with 8 GB RAM;
most of the time was taken by the MIGA. The NLPQL optimiza-
tion takes less than 1 s, which greatly improves the efficiency of
the optimization.

5.2 Results and Discussion. We can validate the final opti-
mized design (from NLPQL) in Orcaflex and treat the results as
the reference value. The comparison is performed and shown in
Table 4.

According to Table 4, the responses obtained from the RBF-
model-based optimization results show good accuracy. The objec-
tive function of the curvature is optimized to 0.239 rad/m, which
represents a 15% improvement compared with the minimum val-
ues of 0.282 rad/m from the samples. More importantly, the
design criterion of the curvature is satisfied. Note that despite the

failure of all of the samples to meet the curvature criterion
(C� 0.25 rad/m), a feasible and optimal design of the riser config-
uration for such an extremely shallow water application can be
found with the established optimal model. In addition, the accu-
racy and efficiency for this optimization problem are relatively
satisfactory.

The above work is based on the regular wave approach, which
may be subject to severe bias in dynamically sensitive systems
[1]. In practical design, the critical cases should be verified by the
irregular wave approach. Therefore, a 3-hr time domain analysis
is performed to verify the optimal design obtained above. The
Jonswap spectrum is used (Hs¼ 4.7 m and Tp¼ 8.6 s), and the
extreme curvature value is calculated from the Rayleigh distribu-
tion [40]. The 3-hrs most probable maximum value for curvature
from the calculation is 0.238 rad/m, and the maximum value with
risk factor 1% is 0.248 rad/m. Obviously, the optimal design is
validated to meet the design criteria.

6 Conclusions

The riser configuration design in extremely shallow water is
rather challenging because of the narrow feasible domain in the
design space and the expense of the simulations. In this paper, a
surrogate-model-based optimization of a steep wave riser is stud-
ied to perform an urgent design for an oil-spill incident in
extremely shallow water. An optimized design is finally obtained
with relatively high accuracy and efficiency using the optimiza-
tion based on the RBF model. Although all of the samples associ-
ated with the construction of the surrogate models fail to meet the
curvature criteria, an optimized design was found to fulfill all of
the specified criteria with high accuracy. This result suggests that
the technique of surrogate-model-based optimization is effective
for solving the problem described in this paper. More generally,
this approach may have great potential to meet the challenges in
some other extreme conditions because it can find a feasible solu-
tion with high probability.

It is difficult to perform a detailed comparison of the efficiency
between surrogate-model-based optimization and the traditional
method because the traditional design of riser configuration is
very experience-dependent; in particular, it may take a designer
from several days to several months to solve the problem consid-
ered in this paper. Nevertheless, the surrogate-model-based opti-
mization technique shows good efficiency; the simulation
required several hours in total in this case, with most of the time
spent on the samples’ simulation. In other words, the number of
samples, which greatly affects the efficiency of this technique, is
influenced by many factors including the surrogate modeling
approaches, the correlation of the design variables, and the com-
plexity of the implicit functions. In this work, we paid more atten-
tion to the feasibility of this approach rather than its efficiency. As
a result, the number of samples would be reduced significantly if
more studies are performed on the factors mentioned above.

An effective approach for modeling the riser configuration opti-
mization problem is to simplify the riser configuration design into
a single-objective optimization problem and then take as few of
the load cases as possible. In this way, other design criteria and
load cases can be accounted for by means of designing some con-
straints and providing margins. However, this approach is heavily
dependent on the designer’s experiences and physical concep-
tions, which requires additional research effort. Nevertheless, the
response of the flexible riser system might change significantly
for different load cases, and it is the most challenging problem for
the application of optimization techniques. Therefore, more com-
plex problems could be encountered in a practical riser design for
which multi-objective optimization based on a surrogate model
might be introduced in the near future.

Finally, it is very efficient to use the regular wave approach for
the construction of surrogate models. However, the riser system
should be investigated to identify the most unfavorable loading
conditions, considering the eigenvalues of the riser system, the

Table 3 Optimization results

Starting point MIGA (step 1) NLPQL (step 2)

L1 0.0 29.4 29.9
L2 0.0 11.8 11.2
L3 0.0 9.9 12.0
P 0.0 36.0 38.7
C — 0.259 0.238
Running time — 1302300 100

Table 4 Comparison between the optimization and simulation
results

C T h d

Optimization design 0.238 14.5 75.0 9.6
Reference value 0.239 15.2 76.0 9.5
Error (%) 0.42 4.61 1.3 0.42
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floater motions, and so on. Furthermore, the results should be
always verified with the irregular wave approach. In addition, the
use of the irregular wave approach in surrogate-model-based opti-
mization is worthy of further study.
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