53 research outputs found

    Comparative genomics reveals Cyclospora cayetanensis possesses coccidia-like metabolism and invasion components but unique surface antigens

    Get PDF
    Assessment of the completeness of sequenced Toxoplasma gondii, Eimeria tenella and Cyclospora cayetanensis genomes based on core eukaryotic protein-encoding genes search using BUSCO. (DOCX 14 kb

    Superior cervical ganglionectomy alters gut microbiota in rats

    Get PDF
    The diversity and complexity of sympathetic function highlight the importance of fundamental research. Little is known about the interaction of superior cervical sympathetic ganglion (SCG) and gut microbiota. In this study, the engagement of the sympathetic ganglia with gut microbiota was investigated. Bilateral superior cervical ganglionectomy (SCGx) significantly altered the microbiota composition in rats 14 days post-surgery, and these microbiotas may participate in several biological pathways in the host, suggesting the vital role of the cervical sympathetic ganglion in regulating the microbiome-brain axis, and further confirming that the sympathetic nervous system (SNS) regulates the microbiome-brain axis

    Upcycling of spent LiCoO2 cathodes via nickel‐ and manganese‐doping

    No full text
    Abstract Direct recycling has been regarded as one of the most promising approaches to dealing with the increasing amount of spent lithium‐ion batteries (LIBs). However, the current direct recycling method remains insufficient to regenerate outdated cathodes to meet current industry needs as it only aims at recovering the structure and composition of degraded cathodes. Herein, a nickel (Ni) and manganese (Mn) co‐doping strategy has been adopted to enhance LiCoO2 (LCO) cathode for next‐generation high‐performance LIBs through a conventional hydrothermal treatment combined with short annealing approach. Unlike direct recycling methods that make no changes to the chemical composition of cathodes, the unique upcycling process fabricates a series of cathodes doped with different contents of Ni and Mn. The regenerated LCO cathode with 5% doping delivers excellent electrochemical performance with a discharge capacity of 160.23 mAh g−1 at 1.0 C and capacity retention of 91.2% after 100 cycles, considerably surpassing those of the pristine one (124.05 mAh g−1 and 89.05%). All results indicate the feasibility of such Ni–Mn co‐doping‐enabled upcycling on regenerating LCO cathodes

    Candidate Genes Identified in Systemic Sclerosis-Related Pulmonary Arterial Hypertension Were Associated with Immunity, Inflammation, and Cytokines

    No full text
    Background. Pulmonary complications of systemic sclerosis (SSc), including pulmonary arterial hypertension (PAH), are the leading causes of patient death. However, the precise molecular mechanisms of its etiology are unclear. This study’s objective was to identify the candidate genes involved in the progression of SSc-PAH and investigate the genes' function. Methods. The gene expression profiles of GSE33463 were obtained from the Gene Expression Omnibus (GEO) database. A free-scale gene coexpression network was constructed using the weighted gene coexpression network analysis (WGCNA) to explore the association between gene sets and clinical features and identify candidate biomarkers. Then, gene ontology analysis was performed. A second dataset was used, GSE19617, to validate the hub genes. The verified hub genes’ potential function was further explored using gene set enrichment analysis (GSEA). Results. Through average link-level clustering, a total of seven modules were classified. A total of 938 hub genes were identified in the key module, and the key module’s function mainly enriched was related to chemokine activities. Subsequently, four candidate genes, BTG3, CCR2, RAB10, and TMEM60, were filtered. The expression levels of these four hub genes were consistent in the GSE19617 and GSE33463 datasets. We plotted the ROC curve of the hub genes (all AUC>0.70). Furthermore, the results of the GSEA for hub genes were correlated with complement and inflammatory responses. Conclusions. The hub genes (BTG3, CCR2, RAB10, and TMEM60) performed well in distinguishing the SSc-PAH patients from controls, and some biological functions, related to immunity, inflammation, and cytokines, might pave the way for follow-up studies on the diagnosis and treatment of SSc-PAH

    Systematic Synthesis of Polyimide@inorganics Core-shell Microspheres via Ion-exchange and Interfacial Reaction

    No full text
    Uniform and stable core-shell microspheres composed of a polyimide (PI) core and thin metal/oxide/sulphide shells were prepared by an interfacial reaction of metal-ion-doped polymeric cores in reduction or in the air or sodium sulphide solutions, respectively. The silver shells on polyimide microspheres were prepared by the introduction of silver ions into ion-exchangeable surface-modified polyimide, and subsequently an in situ reduction of the silver ions in solution. Oxides shells such as SnO2, Co3O4, NiO, CuO or ZnO were prepared by thermally treating the ion-doped microspheres in air, while amorphous sulphides shells such as CuS, ZnS, CoS or Ag2S were prepared by an interfacial reaction of metal-ion-doped microspheres in its corresponding sodium sulphide solutions. The adhesion properties between the copper sulphide and PI substrates are demonstrated superior. This simple strategy is promising in the fabrication of a whole range of inorganic shells on polyimide microspheres, which may offer tailor-designed multi-functionalities based on the distinctive species of these inorganic shells

    Establishment of clinical diagnosis model of Graves’ disease and Hashimoto’s thyroiditis

    No full text
    Abstract Background A clinical diagnosis model include thyroid functions, thyroid antibodies and radioactive iodine uptake (RAIU) of patients with hyperthyroidism were established and as new evaluation indicators for the differentiation of the Graves’ disease (GD) and Hashimoto’s thyroiditis (HT). Methods Clinical data of patients with newly diagnosed hyperthyroidism including gender, age, thyroid function, thyroid antibodies (FT3, FT4, TSH, TPOAb, TGAb, TRAb), RAIU (2 h, 6 h, 24 h) were collected. A stepwise regression analysis was performed to establish a model based on these variables. Results Model 1 was subjected to stepwise regression analysis. After screening, the variables that entered the model included FT3, TGAb, TPOAb, TRAb, 2-h RAIU, 24-h RAIU and gender, in which the variables FT3, TGAb, TRAb, 2-h RAIU, 24-h RAIU, and gender were significantly different. Model 2 without RAIU was also subjected to stepwise regression analysis. After screening, the variables that entered the model included FT4, TGAb, TPOAb, TRAb and gender were statistical significant. The larger value of each variable in the two models indicated the higher probability to diagnose GD. The area under the receiver operating characteristic (ROC) curve of model 1 was 0.843 (95% CI 0.779–0.894), and the area under the ROC curve of model 2 was 0.806 (95% CI 0.685–0.824), which showed good differential diagnostic value. Conclusions GD and HT diagnosis model was established according to the variables including gender, FT3, TGAb, TRAb, the 2-h RAIU, the 24-h RAIU in the model 1, and the variables FT4, TGAb, TPOAb, TRAb and gender in the model 2 that did not include RAIU. These models had high value to differentiate GD and HT for patients with early hyperthyroidism
    corecore