293 research outputs found

    Deterministic-Statistical Approach for an Inverse Acoustic Source Problem using Multiple Frequency Limited Aperture Data

    Full text link
    We propose a deterministic-statistical method for an inverse source problem using multiple frequency limited aperture far field data. The direct sampling method is used to obtain a disc such that it contains the compact support of the source. The Dirichlet eigenfunctions of the disc are used to expand the source function. Then the inverse problem is recast as a statistical inference problem for the expansion coefficients and the Bayesian inversion is employed to reconstruct the coefficients. The stability of the statistical inverse problem with respect to the measured data is justified in the sense of Hellinger distance. A preconditioned Crank-Nicolson (pCN) Metropolis-Hastings (MH) algorithm is implemented to explore the posterior density function of the unknowns. Numerical examples show that the proposed method is effective for both smooth and non-smooth sources given limited-aperture data

    Impact of building density on natural ventilation potential and cooling energy saving across Chinese climate zones

    Get PDF
    Natural ventilation is an energy-efficient approach to reduce the need for mechanical ventilation and air conditioning in buildings. However, traditionally weather data for building energy simulation are obtained from rural areas, which do not reflect the urban micrometeorological conditions. This study combines the Surface Urban Energy and Water Balance Scheme (SUEWS) and EnergyPlus to predict natural ventilation potential (NVP) and cooling energy saving in three idealised urban neighbourhoods with different urban densities in five Chinese cities of different climate zones. SUEWS downscales the meteorological inputs required by EnergyPlus, including air temperature, relative humidity, and wind speed profiles. The findings indicate that NVP and cooling energy saving differences between urban and rural areas are climate- and season-dependent. During summer, the urban-rural differences in natural ventilation hours are −43%–10% (cf. rural) across all climates, while in spring/autumn, they range from −7% to 36%. The study also suggests that single-sided ventilation can be as effective as cross ventilation for buildings in dense urban areas. Our findings highlight the importance of considering local or neighbourhood-scale climate when evaluating NVP. We demonstrate a method to enhance NVP prediction accuracy in urban regions using EnergyPlus, which can contribute to achieving low-carbon building design

    Dual-terminal event triggered control for cyber-physical systems under false data injection attacks

    Get PDF
    summary:This paper deals with the problem of security-based dynamic output feedback control of cyber-physical systems (CPSs) with the dual-terminal event triggered mechanisms (DT-ETM) under false data injection (FDI) attacks. Considering the limited attack energy, FDI attacks taking place in transmission channels are modeled as extra bounded disturbances for the resulting closed-loop system, thus enabling H∞H_{\infty} performance analysis with a suitable ϱ\varrho attenuation level. Then two buffers at the controller and actuator sides are skillfully introduced to cope with the different transmission delays in such a way to facilitate the subsequent security analysis. Next, a dynamic output feedback security control (DOFSC) model based on the DT-ETM schemes under FDI attacks is well constructed. Furthermore, novel criteria for stability analysis and robust stabilization are carefully derived by exploiting Lyapunov-Krasovskii theory and LMIs technique. Finally, an illustrative example is provided to show the effectiveness of the proposed method

    Equivalence between Time Series Predictability and Bayes Error Rate

    Full text link
    Predictability is an emerging metric that quantifies the highest possible prediction accuracy for a given time series, being widely utilized in assessing known prediction algorithms and characterizing intrinsic regularities in human behaviors. Lately, increasing criticisms aim at the inaccuracy of the estimated predictability, caused by the original entropy-based method. In this brief report, we strictly prove that the time series predictability is equivalent to a seemingly unrelated metric called Bayes error rate that explores the lowest error rate unavoidable in classification. This proof bridges two independently developed fields, and thus each can immediately benefit from the other. For example, based on three theoretical models with known and controllable upper bounds of prediction accuracy, we show that the estimation based on Bayes error rate can largely solve the inaccuracy problem of predictability.Comment: 1 Figure, 1 Table, 5 Page

    Amplitude- and phase-resolved nano-spectral imaging of phonon polaritons in hexagonal boron nitride

    Full text link
    Phonon polaritons are quasiparticles resulting from strong coupling of photons with optical phonons. Excitation and control of these quasiparticles in 2D materials offer the opportunity to confine and transport light at the nanoscale. Here, we image the phonon polariton (PhP) spectral response in thin hexagonal boron nitride (hBN) crystals as a representative 2D material using amplitude- and phase-resolved near-field interferometry with broadband mid-IR synchrotron radiation. The large spectral bandwidth enables the simultaneous measurement of both out-of-plane (780 cm-1) and in-plane (1370 cm-1) hBN phonon modes. In contrast to the strong and dispersive in-plane mode, the out-of-plane mode PhP response is weak. Measurements of the PhP wavelength reveal a proportional dependence on sample thickness for thin hBN flakes, which can be understood by a general model describing two-dimensional polariton excitation in ultrathin materials
    • …
    corecore