94 research outputs found

    A class of robust numerical methods for solving dynamical systems with multiple time scales

    Get PDF
    In this paper, we develop a class of robust numerical methods for solving dynamical systems with multiple time scales. We first represent the solution of a multiscale dynamical system as a transformation of a slowly varying solution. Then, under the scale separation assumption, we provide a systematic way to construct the transformation map and derive the dynamic equation for the slowly varying solution. We also provide the convergence analysis of the proposed method. Finally, we present several numerical examples, including ODE system with three and four separated time scales to demonstrate the accuracy and efficiency of the proposed method. Numerical results verify that our method is robust in solving ODE systems with multiple time scale, where the time step does not depend on the multiscale parameters

    A Minimal Mechanosensing Model Predicts Keratocyte Evolution on Flexible Substrates

    Get PDF
    A mathematical model is proposed for shape evolution and locomotion of fish epidermal keratocytes on elastic substrates. The model is based on mechanosensing concepts: cells apply contractile forces onto the elastic substrate, while cell shape evolution depends locally on the substrate stress generated by themselves or external mechanical stimuli acting on the substrate. We use the level set method to study the behaviour of the model numerically, and predict a number of distinct phenomena observed in experiments, such as (i) symmetry breaking from the stationary centrosymmetric to the well-known steadily propagating crescent shape, (ii) asymmetric bipedal oscillations and travelling waves in the lamellipodium leading edge, (iii) response to remote mechanical stress externally applied to the substrate (tensotaxis) and (iv) changing direction of motion towards an interface with a rigid substrate (durotaxis)

    A Multiscale Data-Driven Stochastic Method for Elliptic PDEs with Random Coefficients

    Get PDF
    In this paper, we propose a multiscale data-driven stochastic method (MsDSM) to study stochastic partial differential equations (SPDEs) in the multiquery setting. This method combines the advantages of the recently developed multiscale model reduction method [M. L. Ci, T. Y. Hou, and Z. Shi, ESAIM Math. Model. Numer. Anal., 48 (2014), pp. 449--474] and the data-driven stochastic method (DSM) [M. L. Cheng et al., SIAM/ASA J. Uncertain. Quantif., 1 (2013), pp. 452--493]. Our method consists of offline and online stages. In the offline stage, we decompose the harmonic coordinate into a smooth part and a highly oscillatory part so that the smooth part is invertible and the highly oscillatory part is small. Based on the Karhunen--Loève (KL) expansion of the smooth parts and oscillatory parts of the harmonic coordinates, we can derive an effective stochastic equation that can be well-resolved on a coarse grid. We then apply the DSM to the effective stochastic equation to construct a data-driven stochastic basis under which the stochastic solutions enjoy a compact representation for a broad range of forcing functions. In the online stage, we expand the SPDE solution using the data-driven stochastic basis and solve a small number of coupled deterministic partial differential equations (PDEs) to obtain the expansion coefficients. The MsDSM reduces both the stochastic and the physical dimensions of the solution. We have performed complexity analysis which shows that the MsDSM offers considerable savings over not only traditional methods but also DSM in solving multiscale SPDEs. Numerical results are presented to demonstrate the accuracy and efficiency of the proposed method for several multiscale stochastic problems without scale separation

    A class of robust numerical methods for solving dynamical systems with multiple time scales

    Get PDF
    In this paper, we develop a class of robust numerical methods for solving dynamical systems with multiple time scales. We first represent the solution of a multiscale dynamical system as a transformation of a slowly varying solution. Then, under the scale separation assumption, we provide a systematic way to construct the transformation map and derive the dynamic equation for the slowly varying solution. We also provide the convergence analysis of the proposed method. Finally, we present several numerical examples, including ODE system with three and four separated time scales to demonstrate the accuracy and efficiency of the proposed method. Numerical results verify that our method is robust in solving ODE systems with multiple time scale, where the time step does not depend on the multiscale parameters

    A Minimal Mechanosensing Model Predicts Keratocyte Evolution on Flexible Substrates

    Get PDF
    A mathematical model is proposed for shape evolution and locomotion of fish epidermal keratocytes on elastic substrates. The model is based on mechanosensing concepts: cells apply contractile forces onto the elastic substrate, while cell shape evolution depends locally on the substrate stress generated by themselves or external mechanical stimuli acting on the substrate. We use the level set method to study the behaviour of the model numerically, and predict a number of distinct phenomena observed in experiments, such as (i) symmetry breaking from the stationary centrosymmetric to the well-known steadily propagating crescent shape, (ii) asymmetric bipedal oscillations and travelling waves in the lamellipodium leading edge, (iii) response to remote mechanical stress externally applied to the substrate (tensotaxis) and (iv) changing direction of motion towards an interface with a rigid substrate (durotaxis)

    A Model Reduction Method for Multiscale Elliptic Pdes with Random Coefficients Using an Optimization Approach

    Get PDF
    In this paper, we propose a model reduction method for solving multiscale elliptic PDEs with random coefficients in the multiquery setting using an optimization approach. The optimization approach enables us to construct a set of localized multiscale data-driven stochastic basis functions that give an optimal approximation property of the solution operator. Our method consists of the offline and online stages. In the offline stage, we construct the localized multiscale data-driven stochastic basis functions by solving an optimization problem. In the online stage, using our basis functions, we can efficiently solve multiscale elliptic PDEs with random coefficients with relatively small computational costs. Therefore, our method is very efficient in solving target problems with many different force functions. The convergence analysis of the proposed method is also presented and has been verified by the numerical simulations
    • …
    corecore