255 research outputs found

    Adaptive Meshing Based on the Multi-level Partition of Unity and Dynamic Particle Systems for Medical Image Datasets

    Get PDF
    Surface meshes extracted from sparse medical images contain surface artifacts, there will produce serious distortion and generate numerous narrow triangle meshes. In order to eliminate the impact of the above factors, this paper presents a novel method for generating smooth and adaptive meshes from medical image datasets. Firstly, extracting the stack of contours by means of image segmentation and translating the contours into point clouds. The improved Multi-Level Partition of Unity (MPU) implicit functions are used to fit the point clouds for creating the implicit surface. Then, sampling implicit surface through dynamic particle systems based on Gaussian curvature, dense particles sampling in the high curvature region, sparse particles sampling in the low curvature region. Finally, generating triangle meshes based on particle distribution by using the Delaunay triangulation algorithm. Experimental results show that the proposed method can generate high-quality triangle meshes with distributed adaptively and have a nice gradation of triangle mesh density on the surface curvature

    Bioactivity-guided fractionation of the triglyceride-lowering component and in vivo and in vitro evaluation of hypolipidemic effects of Calyx seu Fructus Physalis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In folklore, some people take the decoction of <it>Calyx seu Fructus Physalis </it>(CSFP) for lowering blood lipids. The present study is designed to evaluate the lipid-lowering activities of CSFP, and search for its pharmacodynamical material.</p> <p>Methods</p> <p>CSFP was extracted by water and 75% ethanol, respectively. The extracts of CSFP for reducing serum lipid levels were evaluated on mouse model of hyperlipidemia. The optimized extract was subjected to the bioactivity-guided fractionation in which the liquid-liquid extraction, collumn chromatography, the <it>in vivo </it>and <it>in vitro </it>models of hyperlipidemia were utilized. The structure of active component was determined by <sup>13 </sup>C-NMR and <sup>1</sup>H-NMR.</p> <p>Results</p> <p>The 75% ethanol extract of CSFP decreased the serum total cholesterol (TC) and triglyceride (TG) levels in mouse model of hyperlipidemia. Followed a separation process for the 75% ethanol extract of CSFP, the fraction B was proved to be an active fraction for lowering lipid <it>in vivo </it>and <it>in vitro </it>experiments, which could significantly decrease the serum TC and TG levels in mouse model of hyperlipidemia, and remarkably decrease the increase of TG in primary mouse hepatocytes induced by high glucose and the increase of TG in HepG2 cells induced by oleic acid. The fraction B2, isolated from B on bioactivity-guided fractionation, could significantly decrease TG level in HepG2 cells. One compound with the highest content in B2 was isolated and determined as luteolin-7-O-beta-D-glucopyranoside by NMR spectra. It could significantly reduce the TG level in HepG2 cells, and inhibited the accumulation of lipids by oil red O stain.</p> <p>Conclusion</p> <p>Our results demonstrated that the 75% ethanol extract of CSFP could improve <it>in vitro </it>and <it>in vivo </it>lipid accumulation. Luteolin-7-O-beta-D-glucopyranoside might be a leading pharmacodynamical material of CSFP for lowering lipids.</p

    Risk-averse stochastic dynamic power dispatch based on deep reinforcement learning with risk-oriented Graph-Gan sampling

    Get PDF
    The increasing penetration of renewable energy sources (RES) brings volatile stochasticity, which significantly challenge the optimal dispatch of power systems. This paper aims at developing a cost-effective and robust policy for stochastic dynamic optimization of power systems, which improves the economy as well as avoiding the risk of high costs in some critical scenarios with small probability. However, it is hard for existing risk-neutral methods to incorporate risk measure since most samples are normal. For this regard, a novel risk-averse policy learning approach based on deep reinforcement learning with risk-oriented sampling is proposed. Firstly, a generative adversarial network (GAN) with graph convolutional neural network (GCN) is proposed to learn from historical data and achieve risk-oriented sampling. Specifically, system state is modelled as graph data and GCN is employed to capture the underlying correlation of the uncertainty corresponding to the system topology. Risk knowledge is the embedded to encourage more critical scenarios are sampled while aligning with historical data distributions. Secondly, a modified deep reinforcement learning (DRL) with risk-measure under soft actor critic framework is proposed to learn the optimal dispatch policy from sampling data. Compared with the traditional deep reinforcement learning which is risk-neutral, the proposed method is more robust and adaptable to uncertainties. Comparative simulations verify the effectiveness of the proposed method

    Tislelizumab in Patients with Previously Treated Advanced Hepatocellular Carcinoma (RATIONALE-208): A Multicenter, Non-Randomized, Open-Label, Phase 2 Trial

    Get PDF
    Introduction: Tislelizumab (anti-programmed cell death protein 1 antibody) showed preliminary antitumor activity and tolerability in patients with advanced solid tumors, including hepatocellular carcinoma (HCC). This study aimed to assess the efficacy and safety of tislelizumab in patients with previously treated advanced HCC. Methods: The multi-regional phase 2 study, RATIONALE-208, examined single-agent tislelizumab (200 mg intravenously every three weeks) in patients with advanced HCC with Child-Pugh A, Barcelona Clinic Liver Cancer stage B or C, and who had received one or more prior lines of systemic therapy. The primary endpoint was objective response rate (ORR), radiologically confirmed per Response Evaluation Criteria in Solid Tumors version 1.1 by Independent Review Committee. Safety was assessed in patients who received ≥1 dose of tislelizumab. Results: Between April 9, 2018 and February 27, 2019, 249 eligible patients were enrolled and treated. After a median study follow-up of 12.7 months, ORR was 13% (n = 32/249; 95% confidence interval [CI], 9–18), including five complete and 27 partial responses. Number of prior lines of therapy did not impact ORR (one prior line, 13% [95% CI, 8–20]; two or more prior lines, 13% [95% CI, 7–20]). Median duration of response was not reached. Disease control rate was 53% and median overall survival was 13.2 months. Of the 249 total patients, grade ≥3 treatment-related adverse events were reported in 38 (15%) patients; the most common was liver transaminase elevations in 10 (4%) patients. Treatment-related adverse events led to treatment discontinuation in 13 (5%) patients or dose delay in 46 (19%) patients. No deaths were attributed to the treatment per investigator assessment. Conclusion: Tislelizumab demonstrated durable objective responses, regardless of the number of prior lines of therapy, and acceptable tolerability in patients with previously treated advanced HCC

    Ocean internal tides suppress tropical cyclones in the South China Sea

    Get PDF
    Tropical Cyclones (TCs) are devastating natural disasters. Analyzing four decades of global TC data, here we find that among all global TC-active basins, the South China Sea (SCS) stands out as particularly difficult ocean for TCs to intensify, despite favorable atmosphere and ocean conditions. Over the SCS, TC intensification rate and its probability for a rapid intensification (intensification by ≥ 15.4 m s−1 day−1) are only 1/2 and 1/3, respectively, of those for the rest of the world ocean. Originating from complex interplays between astronomic tides and the SCS topography, gigantic ocean internal tides interact with TC-generated oceanic near-inertial waves and induce a strong ocean cooling effect, suppressing the TC intensification. Inclusion of this interaction between internal tides and TC in operational weather prediction systems is expected to improve forecast of TC intensity in the SCS and in other regions where strong internal tides are present
    corecore