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The increasing penetration of renewable energy sources (RES) brings volatile
stochasticity, which significantly challenge the optimal dispatch of power systems.
This paper aims at developing a cost-effective and robust policy for stochastic
dynamic optimization of power systems, which improves the economy as well as
avoiding the risk of high costs in some critical scenarios with small probability.
However, it is hard for existing risk-neutral methods to incorporate risk measure
since most samples are normal. For this regard, a novel risk-averse policy learning
approach based on deep reinforcement learning with risk-oriented sampling is
proposed. Firstly, a generative adversarial network (GAN) with graph convolutional
neural network (GCN) is proposed to learn from historical data and achieve risk-
oriented sampling. Specifically, system state is modelled as graph data and GCN is
employed to capture the underlying correlation of the uncertainty corresponding
to the system topology. Risk knowledge is the embedded to encourage more
critical scenarios are sampled while aligning with historical data distributions.
Secondly, a modified deep reinforcement learning (DRL) with risk-measure under
soft actor critic framework is proposed to learn the optimal dispatch policy from
sampling data. Compared with the traditional deep reinforcement learning which
is risk-neutral, the proposed method is more robust and adaptable to
uncertainties. Comparative simulations verify the effectiveness of the proposed
method.
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1 Introduction

With the rapid development of power electronics, it is foreseeable that the proportion of
renewable energy sources (RES) in the power system will continue to increase (Mathiesen
et al., 2015). On the one hand, utilizing RES in future smart grids can help energy systems
cope with energy depletion crisis. On the other hand, the uncertainty brought by RES makes
the scheduling decision of the power system a greater security risk (Zhang et al., 2021). These
challenges have a profound impact on the reliability and economy of power grid operations.
Consequently, finding effective and reliable dispatch decisions has become a critical scientific
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challenge with direct implications for operational safety. Dynamic
economic dispatch (DED) is a dispatch strategy which allows
dispatch decision to be given and adapted in response to the
realizations of uncertainties evolutions. In this regard, developing
the optimal policy (policy is a function about how system operator
makes dispatch decision) for stochastic dynamic dispatch is crucial
to maintain the supply-demand balance for power system under
high renewable energy penetration. However, accurately modeling
and solving the DED are required to address the challenges
associated with uncertainties which attract substantial interest
from both the electricity industry and academia.

Theoretically, stochastic dynamic dispatch of power systems is a
typical multistage sequential decision problem. It usually contains
enormous state and action space, and complex uncertainty
variations, which makes its optimal policy almost intractable. In
the past decade, extensive studies have devoted to developing the
optimal policy for stochastic dynamic dispatch, mainly including
look-ahead dispatch policy (also known as model predictive
control), dynamic programming, and reinforcement learning.
Among these methodologies, deep reinforcement learning (DRL)
(Silver et al., 2016) is regarded as a promising alternative due to its
strong nonlinear fitting ability, adaptability, and generalization.
Through enough learning from training samples, its decision is
adapted to the uncertainties observed overtime. Owing to these
advantages, DRL has been widely applied to corresponding dynamic
dispatch problems in smart grids. Reference (Hua et al., 2019)
adopts a synchronous advantage actor-critic (A3C) to solve the
energy management problem of continuous time coupling.
Meanwhile Bedoya et al. (2021) solve an MDP problem
considering the asynchronous data arrival using deep Q-network
(DQN) and (Zhao and Wang, 2021) proposed an approach
combining a GCN with a DQN to conduct sequential system
restoration.

Although RL has been successfully applied in the optimal
dispatch problem, most of them consider a risk-neutral objective.
That is, they directly use original historical data as training samples
and minimize the expectation of accumulative rewards. Such policy
performs well in most scenarios or normal scenarios, however, when
encountering some critical scenarios of which the possibility is small
but the outcome is severe, e.g., network constraints violation or even
supply-demand unbalance. The main difficulties to incorporate risk
measurement can be summarized as follows: firstly, the critical
scenarios with small possibility may be drown in massive normal
scenarios, it is hard for algorithm to distinguish and learn these
critical scenarios. Secondly, most RL methods use the average
reward of batch samples for learning, risk measure is not
considered. Some studies and our previous researches (Pan et al.,
2020) have proposed a risk-averse RL for stochastic dynamic
dispatch of multi-energy system, however, they directly used
original historical data or Monte-Carlo sampling to form large
batch of samples to compute risk adjusted objective. Note that
the distribution of critical scenarios is quite sparse. Such
approach cannot ensure critical scenarios with high cost and
small probability are effectively sampled, leading to slow
convergence and low sample efficiency. Reference (Liu et al.,
2018) employs function approximation to avoid the trouble of
stochastic modeling. Some literature simplify the problem by
discretization, bringing the dilemma of inaccuracy and dimension

disaster (Yu et al., 2015; Chen et al., 2019). Guo et al. deployed a
novel policy-based PPO algorithm for a real-time dynamic optimal
energy management in microgrids to make optimal scheduling
decisions (Guo et al., 2022). Chen et al. developed a DDPG
algorithm based on hybrid energy scheduling, which can learn
the optimal policies from historical experiences, avoid inadequate
exploration by introducing decaying noise (Chen et al., 2022).
Reference (GUAN et al., 2020; Lv et al., 2020) has undertaken
initial explorations into the utilization of deep reinforcement
learning for real-time grid scheduling optimization. While these
preliminary forays have delved into the optimization of grid
scheduling, they have not yet been extended to address
intricacies such as intra-day rolling scheduling, multi-objective
grid scheduling, and the dynamic considerations arising from
maintenance or minor faults in the system’s topology. The above
studies focus on simplified models for training RL and lack analysis
and discussion of historical data.

Since RL can be regarded as a data-driven approach, its
performance depends on the sampling data. Although a risk-
averse or robust objective can be merged into traditional RL,
another critical problem is how to ensure the risk scenarios with
small probability are effectively sampled during learning? Since
power system is mostly in a normal state, critical scenarios, e.g.,
line overloading, voltage violations, and load shedding unusually
occurs. Existing methods directly use historical data as learning
samples, however, this leads to slow convergence or invalid learning
since critical scenarios are insufficient sampled.

To address the aforementioned key technical challenges,
including the lack of risk-directed samples and the low
robustness of policy, a novel risk-averse policy learning approach
based on DRL with risk-oriented sampling is proposed. Firstly, a
graph generative adversarial network (GGAN) that combines GANs
(Goodfellow et al., 2014; Arjovsky and Bottou, 2017; Chen et al.,
2018; Zhang et al., 2021) and GCNs (Shervashidze et al., 2009) is
proposed. This integration allows to leverage historical graph data
and capture the underlying correlation of the uncertainty
corresponding to the system topology. Notably, GGAN
incorporates risk knowledge to ensure that critical scenarios can
be sufficiently generated while aligning with the underlying original
data distribution. This modification boosts the interaction frequency
between the agent and risk scenarios, enabling the identification and
learning of crucial embeddings. Secondly, the existing DRL
framework, specifically the SAC algorithm, is modified by
incorporating risk measure. Consequently, the agent is
incentivized to develop a cost-effective and robust policy for
stochastic dynamic optimization, resulting in not only
enhancement of the economy but also mitigating the risk of high
costs in critical scenarios with low probabilities.

The specific contributions of this paper are as follows.

1) Risk-averse stochastic dynamic dispatch scheme: A DRL based
risk-averse stochastic dynamic dispatch approach is proposed to
enhance the robustness and economy of policy when
encountering critical risk scenarios in power systems. To
tackle the challenges of existing methods in inadaptability of
risk measure and invalid sampling, this paper focuses on two
aspects: data expansion and algorithm improvement.
Specifically, firstly, risk-oriented sampling is proposed to
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generate enough critical scenarios. Then, these samples are
leaned by a risk measure incorporated DRL algorithms. By
such way, the dispatch policy not only improves the economy
but also avoid the risk of high costs in some rare but critical
scenarios.

2) Risk-oriented sampling: to avoid the critical scenarios with small
possibility being drown in massive normal scenarios, a risk-
oriented sampling is proposed to generate more critical scenarios
while maintaining the original data distribution. To achieve this,
KEG_GAN (Knowledge Embedding Graph Generative
Adversarial network) is proposed. Firstly, a graph
representation is proposed to integrate node features with
topology changes, allowing for the incorporation of topology
information into the system state while achieving efficient
expression of operational state. Secondly, through
incorporating regularization terms into the loss function and
leveraging topological connection relationship in the graph
structure, the knowledge embedding guides data-driven model
to generate risk-oriented samples. Thirdly, this paper proposed
differentiated weighting method for batch samples with
hierarchic stepped thresholds to enhance the utilization
efficiency of critical samples.

2 Problem statement and proposed
method

We first discuss the challenges in applying DRL for grid control
under fast-changing power grid operation scenarios with increased
uncertainties, which necessitates and highlights the need of risk
control capability for DRL-based agents. Then, we introduce the
framework of the method we proposed and how they solve the
problem of optimal dispatch in power systems.

2.1 Problem statement and formulation

With the increased integration of RES into the power grid,
ensuring economic efficiency in power system dispatching
operations requires the consideration of operational risks in low-
probability scenarios. While these risks may have a low likelihood of
occurrence, their potential impact on the safety of the power grid
cannot be underestimated.

The optimal dispatch problem entails learning a policy that
enhances economic performance while mitigating the risk of
incurring high costs in critical scenarios with small probabilities.
Consequently, the dispatch problem in power systems, taking risk
into account, can be represented by the following equation:

obj1minE ∑t

t�0Cr xt( )[ ]
obj2minE ∑t

t�0Ce xt( )[ ] (1)

s.t.
hk xt( )≤ 0, k � 1, . . . , m
Ij xt( ) � 0, j � 1, . . . , n

Where E(x) represents the expectation operator. Ce(x) represents
economic costs and Cr(x) represents the cost of risk. hk(x) and Ij(x)
represent the physical constraints of the power system.

During power system operation, the primary objective is to
guarantee the safety and reliability of the grid. Therefore, in addition
to minimizing obj1 (e.g., risk considerations), obj2 (e.g., economic
costs) should be taken-into-accounted as a secondary objective. The
dispatch policy should prioritize minimizing obj1 while considering
obj2 to ensure that the power system operates efficiently while
maintaining a high level of safety and reliability.

The process of DRL solving the above problem can be defined as
policy search in a Markov Decision Process (MDP) defined by a
tuple (S, A, p, r, y), where S is the state space, A is the action space, p:
S×A→S is the transition function and p:S×A→R is the reward
function. The goal of DRL is to learn a policy πθ(st):S→A, such
that it maximizes the expected accumulative reward J (πθ) over time
under p:

J πθ( ) � Es0 ,a0 ,...,st ,st ∑t

t�0yir st, at( )[ ] (2)
r st, at( ) � f Ce xt( ) + Cr xt( )( ) (3)

Where at~πθ(st) and st+1~p (st, at), and τ is the dispatch period.
Note that maximizing the cumulative reward is the opposite of
minimizing the cost, f(x) achieving the conversion from cost to
reward. The policy is parameterized by a neural network with
weights θ in DRL. The traditional DRL framework is shown in
the upper part of Figure 1.

There is a notable discrepancy in sample sizes across various
scenarios, such as normal operation scenarios and high-risk
operation scenarios or critical scenarios. During the agent’s
interaction with the environment, infrequent critical scenarios
inundate the buffer, leading to policy updates that prioritize
minimizing economic costs without adequately considering the
security of power systems.

The uncertainty associated with RES presents a challenge for
DRL, often leading to decisions that result in unsafe grid operations.
Additionally, the uneven distribution of samples further compounds
these issues, making it even more difficult to address the
aforementioned challenges. To overcome these challenges, this
paper proposes a method to enhance the DRL and effectively
tackle these issues.

2.2 The basic framework of our method

The fundamental framework of the proposed risk-oriented
Graph-Gan sampling assisted DRL for risk-averse stochastic
dynamic dispatch, as well as the comparison with traditional
DRL are illustrated in Figure 1.

The following improvements are made.

(1) Risk scenario generation: The sampling process for scenarios
from the power system is modified to increase the proportion of
risk scenarios while maintaining an appropriate balance with
normal operation scenarios. This adjustment leads to a more
risk-averse strategy, as depicted by the red circle in Figure 1.

(2) Risk probability sampling: To enhance the decision-making
robustness of the intelligent agent, the importance of risk
experience sampling is given higher priority during the
update process. The policy is updated to ensure that the
intelligent agent primarily learns from experiences related to
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high-risk operation scenarios. This adjustment is visualized by
the red circle in Figure 1.

3 Risk scenarios generation

The operation scenario data which is used to train the agent
primarily originates from the measurement data of the actual power
system. Critical scenarios, which often involve network constraints
and can be mathematically described, usually occur very rarely in
datasets. To address the issue of sparse data in the training scenario,
data augmentation techniques can be employed to enhance the
learning ability of the agent. However in the traditional data

augmentation techniques such as GAN, only the path
represented by the blue arrow in Figure 2 is considered. The
model incorporates a deep understanding of the data distribution
and is less inclined to generating outputs based on extremely
scenarios during the generation process.

To address these limitations, this paper introduces KEG_GAN,
which integrates risk knowledge and equations to effectively guide
the training process. This approach leverages data-driven methods
while incorporating additional guidance from risk knowledge, as
depicted by the blue and green arrows in Figure 2. By combining
data-driven learning with the integration of domain-specific
knowledge, KEG_GAN aims to overcome the aforementioned
challenges.

FIGURE 1
The framework of DRL with risk-oriented Graph-Gan sampling.

FIGURE 2
The framework of generation of extreme operation scenario sample based on KEG_GAN.
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This framework begins by acquiring the operation scenario
dataset and power grid topology information from measurement
data and simulation systems within the power system. During the
process of embedding knowledge into the model, the operation
scenario data incorporates risk constraints. Drawing upon risk
knowledge, the mechanism model of power grid operation scenes
is formulated and analyzed, leading to the identification and
extraction of risk equations present within the operation
scenarios. These equations, such as power flow constraints and
section constraints, are regularized and integrated into the GAN
architecture to guide the model’s learning process. In this paper, the
operation scenarios are categorized into two groups: extreme
operation scenarios with low safety margins and safe operation
scenarios with high safety margins.

3.1 Feature extraction of power grid
operation scene based on graph
representation

In addition to node attributes and outputs, the power grid
topology information plays a crucial role in capturing the key
characteristics of operation scenarios. However, many
conventional methods for generating scenarios focus solely on
node-level data without considering the integration of power grid
topology information. This limitation makes it difficult to generate
operation scenarios that reflect the inherent coupling relationships
between nodes using GAN-based approaches.

To address this limitation, effectively combining power grid
topology information with operation scenario data becomes an
essential approach to enhance the generation of power grid
operation scenarios. In this paper, a graph representation is
employed by combining node-level data of operation scenarios
with power grid topology information. To effectively capture the
information embedded in power grid operation scenarios, GCN are
introduced to enhance the traditional GAN framework. This
integration allows for the effective exploration and mining of
critical information within power grid operation scenarios using
GAN-based techniques.

The idea of GCN is to aggregate the information of neighbor
nodes and obtain more powerful feature expression, which can dig
deeply into the potential distribution of power grid operation
scenario data. The calculation formula is shown as follows:

H l+1( ) � f H l( ), A( ) � σ D−0.5A′D−0.5H l( )W l( )( ) (4)

Where, A’ = A + IN is an adjacency matrix with self-connection,
IN is the identity matrix.Dii =∑j Aij’ is the degree matrix ofA’.W(l) is
the trainable parameter in the convolutional layer of the GCN, and
H(l) represents the input characteristics of the l layer. After matrix
multiplication of the above formula, forward propagation is carried
out through activation functions σ(·) such as RELU(·) (Thomas and
Max, 2016).

The topological information is constructed and processed by
GCN to mine the correlation between neighbor nodes and improve
the learning effect of GAN. For this reason, the graph representation
of the power grid operation scenario is shown in Figure 3. Firstly,
sampling is conducted from the power system to obtain the

operation scenario data of load, node voltage, the output of
traditional unit and RES, etc. Then, the characteristic matrix H
of the power grid operation scenario is constructed. The matrix size
is N*T, where T = {load, voltage., renewable energy output}, and the
grid topology represents the connection relationship between nodes,
which is represented by the adjacency matrix A. Therefore, the grid
operation scenario is represented by the adjacency matrix A and the
characteristic matrix H of the grid topology.

3.2 Knowledge embedding within agents
considering operational risk

As mentioned previously, the data collected from the power
system for generating operation scenarios includes various
parameters such as active and reactive power of each node, node
voltage, generator terminal voltage, and power output. However,
when these data are not separated, it becomes challenging to extract
the underlying physical constraints through data-driven methods
alone. Considering the operational risks involved, it becomes
necessary to incorporate human knowledge to uncover the
physical mechanisms behind power grid operation scenarios and
integrate them into the model to guide its learning process.

To address this, this paper introduces the concept of embedding
knowledge into the model, with the goal of leveraging human knowledge
to analyze and model the problem. This approach involves constructing
mathematical equations that accurately represent the real physical
situation. By incorporating a regularization term into the loss
function, the mathematical equations derived from human knowledge
are embedded into the neural network model, enabling guidance and
modification of the data-driven model.

In line with the widespread concern regarding the risk of
terminal voltage crossing the lower limit in power grid operation,
this paper considers the scenario where the voltage at key nodes in
the system approaches the critical lower limit as one of the critical
scenarios. The physical constraints of this scenario are represented
by Eqs 5–8, with the power flow constraints being expressed using
simplified linear power flow equations (Baran and Wu, 1989).

∑
i∈BI,j

Pij �∑
k∈BO,j

Pjk + Pj (5)
∑

i∈BI,j
Qij �∑

k∈BO,j
Qjk + Qj (6)

Ui − Uj � 2 rijPij + xijQij( ) (7)
Uj,min ≤Uj ≤Uj,max (8)

Where, BI,j,BO,j represent the node set that injects and flows
node j along the reference direction. Pij,Qij,Pj,Qj represent active and
reactive power of branch lij and node j. Rij and xij are the resistance
and reactance of the branch. The voltage of node j needs to meet its
upper and lower limit constraints (8). Ukey,min is the lower limit of
the voltage of the key node.

Simultaneously, the key section of the power system bears the
significant responsibility of power transmission during grid
operation. Thus, ensuring the reliability of electric energy
delivered through the key section is a crucial task for the
system’s safe operation. However, the availability of extreme
operation scenario where the power at the critical cross-section
approaches the maximum transmission limit is relatively limited.
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Therefore, determining the critical upper limit for power
transmission at the critical section of the power grid becomes a
vital aspect of generating extreme operation scenarios. The
corresponding constraints can be mathematically expressed
through Eqs 9–10.

Pij,min ≤Pij ≤Pij,max (9)
Qij,min ≤Qij ≤Qij,max (10)

Where, Pij,min,Pij,max,Qij,min,Qij,max represent the maximum and
minimum values of active power and reactive power that the tidal
current section can flow through respectively.

Furthermore, the primary focus of this paper is on critical
scenarios where the power flow in certain key branches, denoted
as Pkey, exceeds the upper limit threshold, posing a risk. To address
this concern, equation constraint (11) is introduced, where Pkey,max

represents the power flow upper limit of the key branches.
Consequently, in the KEG_GAN framework, it is essential to
ensure that the generated operation scenes comply with the
aforementioned constraints to the best extent possible. The loss
function of KEG_GAN can be formulated as follows:

Ltotal � Lmodel + Lconstraint,i, i � 1, 2 (11)
Where, Lmodel represents the loss function of Graph-GAN, and

Lconstraint,i represents the loss function of the regularization
knowledge embedding model with section constraint or voltage
constraint. Therefore, in KEG_GAN, according to the training
objectives of generator G and discriminator D, the sum of loss
functions of the KEG_GAN are shown in Eqs 12, 13, respectively.

LG � −Ez~ pz z( ) log 1 −D G z( )( )( )[ ] (12)
LD � −Ex~ pdata x( ) logD x( )[ ] + Ez~ pz z( ) log 1 −D G z( )( )( )[ ] (13)

Where, E represents the distribution expectation of samples,
pdata(x) represents the probability distribution of real sample x, and
pz(x) represents the probability distribution of generating sample z.
Based on the above equation, the objective function of the
adversarial network generated by Eq. 14 can be derived:

Lmodel � min
G

max
D

W D,G( )
� Ex~ pdata x( ) logD x( )[ ]
+Ez~ pz z( ) log 1 −D G z( )( )( )[ ] (14)

Key section constraints are written into the model by means of
loss function regularization, which can be expressed by Equation 15:

Lconstraint,1 � min
1
Nl

∑Nu

i�1
Pkey − Pkey, max

∣∣∣∣ ∣∣∣∣2⎛⎝ ⎞⎠
� min MSEPkey ,Pkey, max( )

(15)

Where, Nl represents the number of key cross sections; MSE
represents the mean square error loss function in the neural network
model; voltage constraint of key nodes is expressed in Eq. 16:

Lconstraint,2 � min
1
Nu

∑Nu

i�1
Ukey − Ukey, min

∣∣∣∣ ∣∣∣∣2⎛⎝ ⎞⎠
� min MSEUkey ,Ukey, min( )

(16)

Where, Nu represents the number of key nodes; MSE represents
the mean square error loss function in the neural network model.

Hence, the objective of the knowledge embeddingmodel is twofold:
not only to minimize the loss of the GAN but also to ensure that the
operation scenarios generated by the model adheres to the physical
constraints of key sections, guided by the incorporation of risk
knowledge. Its objective function can be written as:

Ltotal � min
G,L

max
D

W D,G, L( )
� Ex~ pdata x( ) logD x( )[ ]
+Ez~ pz z( ) log 1 −D G z( )( )( )[ ] + aLconstraint,i

(17)
Where a represents the hyperparameter.

4 Risk probability sampling

In the presence of a significant number of risk scenarios in the
environment, the interaction between the DRL agent and the
environment results in the accumulation of a substantial amount
of experience in the buffer. Effectively utilizing this experience to
update the intelligence becomes the second challenge addressed in
this paper, as depicted in Figure 4.

To tackle this challenge, we enhance the Soft Actor-Critic (SAC)
algorithm in DRL (Haarnoja Zhou et al., 2018; Christodoulou,

FIGURE 3
The graph representation of the power system operation scene.
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2019). Specifically, when risk scenarios are sampled, they are marked
in the buffer. During the sampling process, weights are assigned to
these risky scenarios, influencing the update process of the strategy
network and value network. By assigning appropriate weights, the
agent can be updated more effectively, leveraging the experience
gained from risky scenarios.

These improvements aim to optimize the utilization of
experience stored in the buffer, allowing the DRL agent to learn
from and adapt to risk scenarios, ultimately enhancing its
performance in handling risk scenarios in power systems.

The traditional SAC algorithm relies on an averaging approach
during the updating process, which can overlook risk scenarios
stored in the buffer. This limitation hinders the agent’s ability to
effectively adapt to reward changes in these scenarios. To address
this issue, we propose an enhancement in this paper by introducing
labels to identify the risk scenarios encountered by the agent. These
labels are used to assign significant weights during the network
parameter update of the SAC algorithm. The specific weights are
determined to meet the following constraints:

n0 + n1 � Sbatch
n0W0 + n1W1 � 1

(18)

Where Sbatch represents the size of the batch, n0 represents the
number of normal scenarios in the batch, n1 represents the number
of risk scenarios in the batch, andW0 andW1 represent the weights
of normal and risk scenarios, respectively.

5 Case study

5.1 The construction of environment

The study in this paper enhances the existing IEEE30-node
system by incorporating two wind power stations and two
photovoltaic power stations. The power upper limit of the critical
branch is set at 100 MW. The specific topology is illustrated in
Figure 5.

In this paper, the environment comprising
4,800 operation scenarios spanning a duration of 200 days
is generated using Monte Carlo simulation (Rubinstein and
Kroese, 2016).

Each time-step agent achieved a maximum reward of 2, which
consisted of two components: 1 reward for ensuring grid operational
safety and 1 reward for optimizing grid economics. The specific
reward value is set as shown in the following equations:

r1 �
1 pline <pline,max

1 − 10
pline

pline,max
pline,max ≤pline ≤ 1.1pline,max

−2 pline > 1.1pline,max

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ (19)

r2 �
∑Nnew

j�1 Pj∑Nnew
j�1 Pj

− ∑NGen
i�1 aP2

i + bPi + c( )∑NGen
i�1 aP2

i, max + bPi,max + c( ) (20)

R � w1r1 + w2r2 (21)
Where pline represents the transmission power of the key line

and pline,max represents the max transmission power of the key line.
NGen and Nnew represent the number of thermal and RES units.

The first component, grid operational safety, accounted for
1 reward point. This reward was earned by making decisions that
maintained the safety and stability of the grid. If a −2 reward is
earned, it will trigger an automatic termination of your policy within
the grid, rendering it impossible to earn any subsequent reward.

The second component, grid economics, also contributed
1 reward point. This reward was obtained by making decisions
that effectively managed and optimized the economic aspects of the
grid such as promoting the rate of RES consumption.

5.2 The details of experiments

The proposed approach in this paper is subjected to three
experiments to evaluate its effectiveness. Here are the details of
each experiment.

1) Performance of different GAN models:

This experiment aims to assess the capabilities of KEG_GAN in
generating critical scenarios while maintaining the invariance of the
data distribution.

2) Different training data on the performance of KEG_GAN:

FIGURE 4
The framework of risk probability sampling.
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In this experiment, the impact of different training data on the
performance of KEG_GAN is investigated. Datasets with different
critical scenarios proportions may be used as training data, and the
performance of KEG_GAN is measured and compared across these
different datasets. This experiment helps determine the robustness
and adaptability of KEG_GAN to different training data sources.

3) The influence of different scenarios on DRL:

The last experiment aims to assess and compare the
performance of conventional DRL methods with our proposed
improved DRL. By conducting a comparative analysis, valuable
insights can be gained regarding the applicability and
effectiveness of KEG_GAN in enhancing the performance of DRL.

5.3 Case analysis

5.3.1 The model structure of KEG_GAN
In this case, the KEG_GAN model extends the traditional GAN

architecture by incorporating two additional layers of graph convolution.
The generator component of the model takes a randomly sampled vector
from a 200-dimensional standard normal distribution as input. It then
passes through two layers of graph convolution to extract node

information. Finally, a 30 × 3 matrix is outputted through a multilayer
perceptron. The discriminator component of the model takes the 30 ×
3matrix as input and processes it through two layers of graph convolution
and amultilayer perceptron. The final output is a scalar value representing
the discriminant result. The ReLU function is employed as the activation
function between the neural networks of each layer. The KEG_GAN
model employs the generative adversarial loss as the loss function for the
discriminator andLtotal for the generator. It utilizes theAdamoptimization
algorithm to perform gradient descent and update the model parameters.
Table 1 provides an overview of the model parameters.

5.3.2 Experiment 1
To assess the performance of KEG_GAN and analyze the

disparity in data distribution between the generated samples and
the training samples, this paper employs the KL divergence as a
metric. The calculation formula of KL divergence is shown in
Formula (22):

DKL H‖K( ) � ∑M

i�1 h xi( )log h xi( ) − h xi( )log k xi( )[ ] (22)

Where H is the data distribution of the guided samples, and K is
the data distribution of the guiding samples. In this paper, H
represents the operation scene distribution generated by the
generator, and K represents the operation scene training set

FIGURE 5
IEEE30 node system environment.
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distribution. Where the smaller KL divergence proves that
the samples generated by the model are closer to the real samples.

In contrast, KEG_GAN is designed to address this issue by
learning and capturing more diverse data distributions. This enables
the model to generate samples that better conform to the
distribution of the training data, even in scenarios characterized
by higher levels of randomness and uncertainty. By leveraging the
capabilities of KEG_GAN, the generated samples exhibit greater
variability and better match the diversity present in the training data
distribution. This allows for more accurate representation and
generation of operation scenarios, particularly in scenarios with
increased complexity and uncertainty introduced by the integration
of RES.

As shown on Table 2, the results of our study demonstrate the
enhanced sample generation capability of KEG_GAN. The incorporation
of GCN enhances the information extraction capability of the model,
minimizing the distance between the generated operation scenarios and

real operation scenarios. Furthermore, knowledge embedding in KE-
GAN leads to an increase in the KL divergence of the model. This
knowledge embedding step changes the distribution of the generated data.

In the distributed network system with RES, the operation
scenarios exhibit greater diversity, leading to a more varied data
distribution. GAN’s performance is significantly reduced in such
scenarios, with the KL divergence of active power sharply increasing.
This divergence indicates a significant deviation from the real data
distribution, making it challenging for the generated samples to
meet the requirements of intelligent algorithms.

However, the proposed KEG_GAN method in this paper
addresses these challenges by representing the grid operation
scenarios graphically and embedding the neural network model
within the physical mechanisms. By maintaining the same data
distribution, KEG_GAN achieves the generation of high-quality grid
operation scenario samples.

In large-scale power grid operation scenarios, it is common to
encounter a significant imbalance in sample distribution, where
there are more samples representing normal operation conditions
and fewer samples representing risky operation scenarios. In this
paper, we address this issue by incorporating knowledge embedding
into the neural network model, allowing the generated scenarios to
consider the inherent risks in power grid operations. To assess the
effectiveness of knowledge embedding in generating extreme
operation scenarios, we focus on the power distribution of key
branches as an example. To analyze the generated samples, we
perform power flow calculations and examine the power
distribution of these key branches. Figure 6 illustrates the power
distribution of the key branches.

In particular, we set the maximum allowable transmitting
power of the key branch to 100 MW. Any scenario in which the
difference between the transmission power of the key branch and
the maximum allowable transmission power exceeds 25 MW is

TABLE 1 The model structure of KEG_GAN.

Model Network structure Input dimension Output dimension

Generator

GCN 30*3 and 30*30 30*16

GCN 30*16 30*8

MLP 30*8 30*3

Discriminator

GCN 30*3 and 30*30 30*16

GCN 30*16 30*8

MLP 30*8 1

TABLE 2 KL divergence of different models.

Network DKL(P) DKL(Q) DKL(V)

GAN 0.2592 0.1542 0.0026

KE-GAN 0.2788 0.1513 0.0076

G-GAN 0.2087 0.1526 0.0031

KEG_GAN 0.2252 0.1596 0.0028

FIGURE 6
Key branch power distribution of test model.

TABLE 3 The proportion of critical scenarios.

Network Proportion (%)

Train data 1.37

GAN 1.54

KE-GAN 3.10

G-GAN 1.38

KEG_GAN 5.15
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considered an extreme operation scenario. By evaluating the
power distribution of key branches, we can gauge the
capability of knowledge embedding in generating extreme
operation scenarios. This analysis provides insights into the
effectiveness of our approach in capturing and representing
the risks associated with power grid operations.

As depicted in Figure 6, the width of the violin plot illustrates the
proportion of different data. Notably, the key branch power
generated by G-GAN closely aligns with the distribution of the
training data. While G-GAN minimizes KL divergence, it does not
yield an improvement in the performance of critical scenarios. On
the other hand, KE-GAN enhances the proportion of critical
scenarios in the operation scenarios. Although KE-GAN
improves the performance of critical scenarios, it leads to a
reduction in the performance of data distribution.

As shown on Table 3, the results indicate that KEG_GAN achieves
the greatest improvement in the performance of critical scenarios while
minimizing the decline in the performance of data distribution. By
combining the strengths of G-GAN and KE-GAN, KEG_GAN
effectively increases the proportion of extreme operation scenarios in
the generated scenarios while preserving the same data distribution.
This addresses the challenge of extremely sparse samples in extreme
operation scenarios. KEG_GAN achieves this by incorporating basic
physical constraints such as power flow and section constraints, which
regulate the generated samples according to the power flow section
constraint, bringing them closer to the extreme operation scenarios.
Consequently, KEG_GAN offers a solution for the highly imbalanced
distribution of extensive power grid operation scenarios.

5.3.3 Experiment 2
In this paper, we want to explore the effect of different training

samples on the model performance so that the extreme scenario
percentages of 0, 5, 10 and 20 are set to verify the extreme scenario
sample generation capability of the proposed method. The proportion
of critical scenarios in the generated sample is shown in Figure 7.

As the proportion of critical scenarios in the operation scenarios
increases, the proportion of critical scenarios in the scenarios
generated by GAN and KEG_GAN also increases. However, the
performance improvement of GAN in generating critical scenarios
is not significant. Additionally, the proportion of critical scenarios
generated by GAN is consistently lower than the proportion of
critical scenarios in the training scenarios.

On the other hand, when the proportion of critical scenarios in
the training scenarios varies, KEG_GAN demonstrates an
improvement in generating critical scenarios compared to the
training scenarios. By leveraging knowledge embedding to
incorporate features of critical scenarios, KEG_GAN directs the
agent’s focus towards critical scenarios, thereby increasing their
proportion in the generated scenarios. In contrast, GAN tends to
prioritize the data distribution in the operation scenarios and tends
to neglect the extreme operation scenarios, resulting in a decreasing
proportion of extreme operation scenarios in the generated
scenarios. Consequently, relying solely on increasing the
proportion of critical scenarios for GAN to generate critical
scenarios often proves ineffective.

Furthermore, when there are no critical scenarios present in the
training samples, KEG_GAN exhibits the capability to generate
approximately 5% of critical scenarios. This demonstrates that
our method possesses few-shot (Sung et al., 2018) or zero-shot
(Xian et al., 2018) capabilities, while GAN struggles to generate
unseen samples.

5.3.4 Experiment 3
The training data comprised different sets of samples. Following

the completion of training, the agents were tested over a period of
10 consecutive days, with decision-making intervals of 15 min for
both training and testing phases. The training result is presented in
Figure 8.

During the training process, we observed that the reward of the
agent trained solely on real data was not significantly different from
the agent trained using data generated by GAN. However, SAC
trained with real data contained a small number of infrequent

FIGURE 7
The proportion of critical scenarios generated by GAN and
KEG_GAN.

FIGURE 8
The training reward for different agents.
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critical scenarios, which were sampled less frequently. As a result,
the overall training process exhibited minimal fluctuations. On the
other hand, SAC-GAN tended to overlook such critical scenarios,
leading to smoother loss curves for the agent. Unfortunately, this
smoothness also made it difficult for the agent to adequately account
for these critical scenarios.

By incorporating KEG_GAN enhanced data into the training
process, we enable the SAC-KEG_GAN to explore a broader range
of risk scenarios. As a result, the training reward exhibits oscillations
when compared to the traditional SAC algorithm.

This oscillation is challenging to achieve when relying solely on
raw data. Consequently, SAC focuses on minimizing the training
cost, thereby attaining a stable reward.

To evaluate the performance of various agents, we carried
out a comprehensive 10-day testing phase. During this period,
the agents actively responded to the changing environmental
conditions by making decisions every 15 min. In a single day,
there were a total of 96 time sections in which decisions were
made. One crucial aspect we assessed was the impact of key
branch crossings on grid safety. If an agent’s decision resulted in
crossing the safety limit of the grid, it rendered the grid unsafe,
and the agent was unable to continue participating in the
decision-making process. The test results, presented in
Figure 9 and Table 4, provide a clear visualization of the
agents’ performance throughout the testing phase.

It becomes evident that as the number of training iterations
increases, both SAC and SAC-GAN fail to ensure the safe and stable
operation of the grid. The test consistently gets interrupted on
certain days due to the key branch surpassing its limit.
Consequently, the smart body is unable to receive subsequent
rewards. However, SAC-KEG_GAN incorporates a
comprehensive consideration of the risk associated with grid
operations. It evaluates both the risk and the economic aspects of
the grid, enabling it to provide a more robust strategy. After a certain
number of training iterations, the decisions made by SAC-KEG_
GAN lead to a grid that can operate safely and steadily for a duration
of 10 days. In the analysis, the best strategies from the

aforementioned testing process were selected and their results are
presented in Table 4. The best successful operation rate of SAC is 0.7,
SAC-GAN achieves a successful operation rate of 0.5, while SAC-
KEG_GAN demonstrates a successful operation rate of 1.

Upon closer examination, it is discovered that SAC fails to
obtain subsequent rewards on days 2, 6, and 7 due to the given
decision’s critical section crossing its limit. On the contrary, the
performance of SAC-GAN is marginally inferior to that of SAC.
This can be attributed to SAC-GAN’s tendency to overlook
samples from high-risk scenarios during the process of data
augmentation. As a consequence, the generated scenarios
might lack the critical instances that contribute to the overall
performance of the policy learned by the intelligent agent.
Although the cumulative reward of the strategy provided by
SAC-KEG_GAN may be lower than that of SAC on certain
days, it effectively evaluates the risk and economic aspects of
grid operation by learning from experiences gained in risky
scenarios. As a result, it generates decisions that enable the
grid to operate safely and improve the economics of grid
operation while ensuring grid safety.

6 Conclusion

In the context of high-dimensional uncertainty, this paper
addresses the limited adaptability of policies in critical risk
scenarios. By adopting a multi-objective modeling approach
that incorporates both security and economy, the original
problem is formulated as a multi-stage risk-averse stochastic
sequential decision-making problem with dynamic risk
metrics. To tackle this challenge, Risk-averse stochastic
dynamic dispatch of power systems based on deep
reinforcement learning with risk-oriented Graph-Gan
sampling is proposed. This policy aims to overcome the
shortcomings of existing methods in risk sample generation
and scenarios identification, enabling the rapid solution of
optimal risk-averse intraday dispatch policy. Simulation
results demonstrate that proposed approach outperforms other
commonly used online dispatch policies, which not only
improves the economic efficiency of power system operations

FIGURE 9
The successful operation rate for different agents.

TABLE 4 The Reward of different agents.

Day SAC SAC-GAN SAC-KEG_GAN

1 189.5729 180.5112 175.8437

2 158.3673 179.2283 179.1771

3 187.39 178.6056 177.0162

4 187.6509 179.9945 176.9828

5 188.0185 130.5518 171.3925

6 128.6596 118.0459 172.5115

7 164.0986 32.2041 171.3697

8 184.9219 159.9455 174.9195

9 187.6598 50.10933 174.6427

10 188.1027 188.3726 153.0167
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but also reduces the potential high costs associated with critical
scenarios. This algorithm incorporates risk-averse preferences to
avoid unnecessary load shedding, particularly in scenarios involving
RESs abandonment. Hence, it is crucial to carefully consider the risk
aversion preferences of the algorithm in the specific application.
Furthermore, the proposed algorithm achieves high computing
efficiency in real-time scheduling through offline learning and does
not rely on predictive information for real-time scheduling. Its
promising application prospects and scalability extend to addressing
other complex online stochastic optimization scheduling problems in
future smart grids.
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