76 research outputs found

    Shared memory parallel computing procedures for nonlinear dynamic analysis of super high rise buildings

    Get PDF
    The proposed parallel state transformation procedures (PSTP) of fiber beam-column elements and multi-layered shell elements, combined with the parallel factorization of Jacobian (PF), are incorporated into a finite element program. In PSTP, elements are classified into different levels of workload prior to state determination in order to balance workload among different threads. In PF, the multi-threaded version of OpenBLAS is adopted to compute super-nodes. A case study on four super high-rise buildings, i.e. S1~S4, has demonstrated that the combination of PSTP and PF does not have any observable influence on computational accuracy. As number of elements and DOFs increases, the ratio of time consumed in the formation of the Jacobian to that consumed in the solution of algebraic equations tends to decrease. The introduction of parallel solver can yield a substantial reduction in computational cost. Combination of PSTP and PF can give rise to a further significant reduction. The acceleration ratios associated with PSTP do not exhibit a significant decrease as PGA level increases. Even PGA level is equal to 2.0g, PSTP still can result in acceleration ratios of 2.56 and 1.92 for S1 and S4, respectively. It is verified that it is more effective to accelerate analysis by reducing the time spent in solving algebraic equations rather than reducing that spent in the formation of the Jacobian for super high-rise buildings

    A 3D Wideband Geometry-Based Stochastic Model for UAV Air-to-Ground Channels

    Get PDF

    Micro-Porosity and gas emission characteristics of thermally contacted metamorphic coal by igneous intrusion

    Get PDF
    In order to quantitatively characterize the pore structure of thermally contacted metamorphic coal by igneous intrusion and investigate the intrinsic connection between the pore and dispersion properties of coal, the samples of metamorphic coal from different locations of Daxing Coal Mine were collected and processed. The correlative analysis on pore characteristics, including pore area, perimeter, shape factor and fractal dimension of pores with different sizes, were carried out by using scanning electron microscopy (SEM) and pore-fracture analysis system (PCAS). The results show that the porosity of macro- and meso-pores and the number of pores in the metamorphic coal are larger than those of the normal coal. The total length of pores per unit area and the average shape factor increase, and the connectivity of pore is raised, resulting in an enhanced gas release capacity (increased V1) within the first one second. The proportion of gas emission in the first one second of metamorphic coal is much higher than that of other coals. The decrease of pore volume and specific surface area of micropores makes the adsorption capacity weaker, which results in a decrease in the total amount of emission - smaller Δp value, and earlier inflection point and faster attenuation on the emission curve, namely an increased α value. In addition, the V1, α value and volatile content satisfy the quadratic nonlinear and linear relationships, respectively. In the prediction of outburst risk of thermally contacted metamorphic coal, it is more reasonable to use the V1 index to characterize the gas release rate

    Advances in Chinese medicine-mediated AMPK/mTOR signaling pathway for the treatment of osteoporosis

    Get PDF
    Osteoporosis (OP) is a systemic bone disease and a common orthopedic disorder in elderly patients. High morbidity, disability and mortality rates and medical cost of OP bring huge burden to the patients and their family. Serine/threonine protein kinase(AMPK)/ mammalian target of rapamycin (mTOR) signaling pathway plays a significant role in cell metabolism and apoptosis. Traditional Chinese medicine monomer or compound can prevent and treat OP by regulating the expression levels of related factors through the AMPK/mTOR signaling pathway, whereas the specific mechanism remains elusive. In this article, the effect of AMPK/mTOR signaling pathway upon osteoblasts and osteoclasts, and the regulatory role of traditional Chinese medicine were reviewed, aiming to provide novel perspectives and ideas for prevention and treatment of OP

    Adherence to diabetes risk reduction diet and the risk of head and neck cancer: a prospective study of 101,755 American adults

    Get PDF
    BackgroundAdherence to the diabetes risk reduction diet (DRRD) may potentially reduce the risk of developing head and neck cancer (HNC) as the diet includes fruits and limits red and processed meats, known risk factors for HNC. However, there is currently no epidemiological research to investigate this potential association.MethodsThe present study utilized data on demographics, lifestyles, medications, and diets of participants from the Prostate, Lung, Colorectal, and Ovarian (PLCO) Cancer Screening Trial to explore the potential association between adherence to DRRD and the risk of HNC. We used a DRRD score to evaluate adherence to the dietary pattern and employed Cox regression analysis to calculate hazard ratios (HRs) and 95% confidence intervals (CIs) for HNC risk. Several subgroup analyses were carried out to identify potential effect modifiers, and multiple sensitivity analyses were performed to evaluate the stability of the correlation. The nine components of the DRRD was assessed separately for its association with the risk of HNC.ResultsDuring a mean follow up of 8.84 years, 279 cases of HNC were observed. DDRD score was found to be inversely associated with the risk of HNC (HR Q4 vs. Q1: 0.582; 95% CI: 0.396, 0.856; p = 0.005 for trend) in a linear dose–response manner (p = 0.211 for non-linearity). Subgroup analysis indicated this inverse correlation was more pronounced among participants who had never smoked (HRQ4 vs. Q1: 0.193; 95% CI: 0.073, 0.511; p < 0.001 for trend) compared to current or former smokers (p = 0.044 for interaction). The primary association of DDRD and HNC risk remained robust after several sensitivity analyses. Regarding the individual components of DRRD, an inverse association was also observed between the risk of HNC and increased intake of cereal fiber and whole fruit (all p < 0.05 for trend).ConclusionOur findings provide evidence that following the DRRD pattern may reduce the risk of NHC, especially for non-smokers

    Engineered zero-dispersion microcombs using CMOS-ready photonics

    Full text link
    Normal group velocity dispersion (GVD) microcombs offer high comb line power and high pumping efficiency compared to bright pulse microcombs. The recent demonstration of normal GVD microcombs using CMOS-foundry-produced microresonators is an important step towards scalable production. However, the chromatic dispersion of CMOS devices is large and impairs generation of broadband microcombs. Here, we report the development of a microresonator in which GVD is reduced due to a couple-ring resonator configuration. Operating in the turnkey self-injection-locking mode, the resonator is hybridly integrated with a semiconductor laser pump to produce high-power-efficiency combs spanning a bandwidth of 9.9 nm (1.22 THz) centered at 1560 nm, corresponding to 62 comb lines. Fast, linear optical sampling of the comb waveform is used to observe the rich set of near-zero GVD comb behaviors, including soliton molecules, switching waves (platicons) and their hybrids. Tuning of the 20 GHz repetition rate by electrical actuation enables servo locking to a microwave reference, which simultaneously stabilizes the comb repetition rate, offset frequency and temporal waveform. This hybridly integrated system could be used in coherent communications or for ultra-stable microwave signal generation by two-point optical frequency division.Comment: 8 pages, 4 figure

    Evaluation of HY-2A Scatterometer Wind Vectors Using Data from Buoys, ERA-Interim and ASCAT during 2012–2014

    No full text
    The first Chinese operational Ku-band scatterometer on board Haiyang-2A (HY-2A), launched in August 2011, is designed for monitoring the global ocean surface wind. This study estimates the quality of the near-real-time (NRT) retrieval wind speed and wind direction from the HY-2A scatterometer for 36 months from 2012 to 2014. We employed three types of sea-surface wind data from oceanic moored buoys operated by the National Data Buoy Center (NDBC) and the Tropical Atmospheric Ocean project (TAO), the European Centre for Medium Range Weather Forecasting (ECMWF) reanalysis data (ERA-Interim), and the advanced scatterometer (ASCAT) to calculate the error statistics including mean bias, root mean square error (RMSE), and standard deviation. In addition, the rain effects on the retrieval winds were investigated using collocated Climate Prediction Center morphing method (CMORPH) precipitation data. All data were collocated with the HY-2A scatterometer wind data for comparison. The quality performances of the HY-2A NRT wind vectors data (especially the wind speeds) were satisfactory throughout the service period. The RMSEs of the HY-2A wind speeds relative to the NDBC, TAO, ERA-Interim, and ASCAT data were 1.94, 1.73, 2.25, and 1.62 m·s−1, respectively. The corresponding RMSEs of the wind direction were 46.63°, 43.11°, 39.93°, and 47.47°, respectively. The HY-2A scatterometer overestimated low wind speeds, especially under rainy conditions. Rain exerted a diminishing effect on the wind speed retrievals with increasing wind speed, but its effect on wind direction was robust at low and moderate wind speeds. Relative to the TAO buoy data, the RMSEs without rain effect were reduced to 1.2 m·s−1 and 39.68° for the wind speed direction, respectively, regardless of wind speed. By investigating the objective laws between rain and the retrieval winds from HY-2A, we could improve the quality of wind retrievals through future studies

    Precipitation data assimilation in WRFDA 4D-Var: implementation and application to convection-permitting forecasts over United States

    No full text
    Precipitation data assimilation has been developed in the Weather Research and Forecasting model data assimilation system (WRFDA) using four-dimensional variational (4D-Var) approach. Unlike other conventional data, precipitation is an integral quantity and it is not included as a control variable in WRFDA. A simplified Kessler scheme is used in tangent linear and adjoint model. Precipitation data are directly assimilated in WRFDA 4D-Var, and the assimilation of precipitation will have feedback to all the control variables via the constraint of the linearized physics package. Firstly, we present single observation experiments to exhibit how dynamic, thermodynamic and moisture fields are adjusted by assimilating rainfall information. Then, the National Centers for Environmental Prediction Stage IV precipitation data are assimilated for a heavy rainfall case on 9 June 2010 at a convection-permitting model setting (4-km). Finally, we conducted one-week experiments to further validate the robustness of the results for precipitation assimilation. Results show that precipitation assimilation has a positive impact on model fields, particularly on the low-level humidity. For the impact on precipitation forecasts, it indicates that precipitation assimilation reduces spin-up time efficiently, removes false alarms and produces model forecast precipitation closer to the observations through the changes in temperature, moisture and wind imposed in the analyses. The impact from precipitation assimilation persists up to three hours on average

    Research on the action characteristics and breaking control of 100 kA series double break DC vacuum circuit breaker for CRAFT quench protection system

    No full text
    The DC vacuum circuit breaker plays an important role in the quench protection system of the Comprehensive Research Facility for Fusion Technology (CRAFT) project. The study of the operating characteristics of vacuum circuit breakers can effectively improve breaking reliability. This article introduces the design and basis of the series double break DC vacuum circuit breaker for the CRAFT quench protection system. It adopts the electromagnetic repulsion driving method to ensure rapid action and the operating mechanism design to ensure the synchronization of the double break action. A magnetic shielding setting is proposed through simulation calculations to solve the uniformity of magnetic induction strength between breaks. Combining the test data of action characteristics with the theory of optimal opening distance for current zero crossing, a DC breaking platform for the vacuum circuit breaker was designed, and control strategies were determined, thus completing the 100 kA DC breaking experiment. The vacuum circuit breaker studied in this article meets the technical requirements of the CRAFT quench protection system and provides experience and experimental data for the design of high-current vacuum circuit breakers
    • …
    corecore