387 research outputs found

    TIMME: Twitter Ideology-detection via Multi-task Multi-relational Embedding

    Full text link
    We aim at solving the problem of predicting people's ideology, or political tendency. We estimate it by using Twitter data, and formalize it as a classification problem. Ideology-detection has long been a challenging yet important problem. Certain groups, such as the policy makers, rely on it to make wise decisions. Back in the old days when labor-intensive survey-studies were needed to collect public opinions, analyzing ordinary citizens' political tendencies was uneasy. The rise of social medias, such as Twitter, has enabled us to gather ordinary citizen's data easily. However, the incompleteness of the labels and the features in social network datasets is tricky, not to mention the enormous data size and the heterogeneousity. The data differ dramatically from many commonly-used datasets, thus brings unique challenges. In our work, first we built our own datasets from Twitter. Next, we proposed TIMME, a multi-task multi-relational embedding model, that works efficiently on sparsely-labeled heterogeneous real-world dataset. It could also handle the incompleteness of the input features. Experimental results showed that TIMME is overall better than the state-of-the-art models for ideology detection on Twitter. Our findings include: links can lead to good classification outcomes without text; conservative voice is under-represented on Twitter; follow is the most important relation to predict ideology; retweet and mention enhance a higher chance of like, etc. Last but not least, TIMME could be extended to other datasets and tasks in theory.Comment: In proceedings of KDD'20, Applied Data Science Track; 9 pages, 2 supplementary page

    Two-dimensional Massless Dirac Fermions in Antiferromagnetic AFe2As2 (A = Ba, Sr)

    Get PDF
    We report infrared studies of AFe2_{2}As2_{2} (A = Ba, Sr), two representative parent compounds of iron-arsenide superconductors, at magnetic fields (B) up to 17.5 T. Optical transitions between Landau levels (LLs) were observed in the antiferromagnetic states of these two parent compounds. Our observation of a B\sqrt{B} dependence of the LL transition energies, the zero-energy intercepts at B = 0 T under the linear extrapolations of the transition energies and the energy ratio (∼\sim 2.4) between the observed LL transitions, combined with the linear band dispersions in two-dimensional (2D) momentum space obtained by theoretical calculations, demonstrates the existence of massless Dirac fermions in antiferromagnetic BaFe2_{2}As2_{2}. More importantly, the observed dominance of the zeroth-LL-related absorption features and the calculated bands with extremely weak dispersions along the momentum direction kzk_{z} indicate that massless Dirac fermions in BaFe2_{2}As2_{2} are 2D. Furthermore, we find that the total substitution of the barium atoms in BaFe2_{2}As2_{2} by strontium atoms not only maintains 2D massless Dirac fermions in this system, but also enhances their Fermi velocity, which supports that the Dirac points in iron-arsenide parent compounds are topologically protected.Comment: Magneto-infrared study, Landau level spectroscopy, DFT+DMFT calculation
    • …
    corecore