464 research outputs found

    Efficient separation of the orbital angular momentum eigenstates of light

    Get PDF
    Orbital angular momentum (OAM) of light is an attractive degree of freedom for funda- mentals studies in quantum mechanics. In addition, the discrete unbounded state-space of OAM has been used to enhance classical and quantum communications. Unambiguous mea- surement of OAM is a key part of all such experiments. However, state-of-the-art methods for separating single photons carrying a large number of different OAM values are limited to a theoretical separation efficiency of about 77 percent. Here we demonstrate a method which uses a series of unitary optical transformations to enable the measurement of lights OAM with an experimental separation efficiency of more than 92 percent. Further, we demonstrate the separation of modes in the angular position basis, which is mutually unbiased with respect to the OAM basis. The high degree of certainty achieved by our method makes it particu- larly attractive for enhancing the information capacity of multi-level quantum cryptography systems

    On-chip spectroscopy with thermally-tuned high-Q photonic crystal cavities

    Full text link
    Spectroscopic methods are a sensitive way to determine the chemical composition of potentially hazardous materials. Here, we demonstrate that thermally-tuned high-Q photonic crystal cavities can be used as a compact high-resolution on-chip spectrometer. We have used such a chip-scale spectrometer to measure the absorption spectra of both acetylene and hydrogen cyanide in the 1550 nm spectral band, and show that we can discriminate between the two chemical species even though the two materials have spectral features in the same spectral region. Our results pave the way for the development of chip-size chemical sensors that can detect toxic substances

    Weak antilocalization in epitaxial graphene: evidence for chiral electrons

    Full text link
    Transport in ultrathin graphite grown on silicon carbide is dominated by the electron-doped epitaxial layer at the interface. Weak anti-localization in 2D samples manifests itself as a broad cusp-like depression in the longitudinal resistance for magnetic fields 10 mT<B<< B < 5 T. An extremely sharp weak-localization resistance peak at B=0 is also observed. These features quantitatively agree with graphene weak-(anti)localization theory implying the chiral electronic character of the samples. Scattering contributions from the trapped charges in the substrate and from trigonal warping due to the graphite layer on top are tentatively identified. The Shubnikov-de Haas oscillations are remarkably small and show an anomalous Berry's phase.Comment: 5 pages, 4 figures. Minor change

    Quantum control via a genetic algorithm of the field ionization pathway of a Rydberg electron

    Get PDF
    Quantum control of the pathway along which a Rydberg electron field ionizes is experimentally and computationally demonstrated. Selective field ionization is typically done with a slowly rising electric field pulse. The (1/n∗)4(1/n^*)^4 scaling of the classical ionization threshold leads to a rough mapping between arrival time of the electron signal and principal quantum number of the Rydberg electron. This is complicated by the many avoided level crossings that the electron must traverse on the way to ionization, which in general leads to broadening of the time-resolved field ionization signal. In order to control the ionization pathway, thus directing the signal to the desired arrival time, a perturbing electric field produced by an arbitrary waveform generator is added to a slowly rising electric field. A genetic algorithm evolves the perturbing field in an effort to achieve the target time-resolved field ionization signal.Comment: Corrected minor typographic errors and changed the titl

    Towards Quantum Communication with more than 4 bits/photon: Near-Perfect Sorting of the Orbital Angular Momentum Modes of Light

    Get PDF
    We demonstrate a method that uses a series of optical transformations to sort the orbital angular momentum and the mutually-unbiased angular position modes of light with a separation efficiency of more than 92%

    Quantum-limited estimation of the axial separation of two incoherent point sources

    Get PDF
    Improving axial resolution is crucial for three-dimensional optical imaging systems. Here we present a scheme of axial superresolution for two incoherent point sources based on spatial mode demultiplexing. A radial mode sorter is used to losslessly decompose the optical fields into a radial mode basis set to extract the phase information associated with the axial positions of the point sources. We show theoretically and experimentally that, in the limit of a zero axial separation, our scheme allows for reaching the quantum Cram\'er-Rao lower bound and thus can be considered as one of the optimal measurement methods. Unlike other superresolution schemes, this scheme does not require neither activation of fluorophores nor sophisticated stabilization control. Moreover, it is applicable to the localization of a single point source in the axial direction. Our demonstration can be useful to a variety of applications such as far-field fluorescence microscopy.Comment: Comments are welcom

    Electromagnetic Momentum in Dispersive Dielectric Media

    Full text link
    When the effects of dispersion are included, neither the Abraham nor the Minkowski expression for electromagnetic momentum in a dielectric medium gives the correct recoil momentum for absorbers or emitters of radiation. The total momentum density associated with a field in a dielectric medium has three contributions: (i) the Abraham momentum density of the field, (ii) the momentum density associated with the Abraham force, and (iii) a momentum density arising from the dispersive part of the response of the medium to the field, the latter having a form evidently first derived by D.F. Nelson [Phys. Rev. A 44, 3985 (1991)]. All three contributions are required for momentum conservation in the recoil of an absorber or emitter in a dielectric medium. We consider the momentum exchanged and the force on a polarizable particle (e.g., an atom or a small dielectric sphere) in a host dielectric when a pulse of light is incident upon it, including the dispersion of the dielectric medium as well as a dispersive component in the response of the particle to the field. The force can be greatly increased in slow-light dielectric media.Comment: 9 pages. To be published by Optics Communication

    Time Dependence of Few-Body Forster Interactions Among Ultracold Rydberg Atoms

    Get PDF
    Rubidium Rydberg atoms in either |mj| sublevel of the 36p3/2 state can exchange energy via Stark-tuned Förster resonances, including two-, three-, and four-body dipole-dipole interactions. Three-body interactions of this type were first reported and categorized by Faoro et al. [Nat. Commun. 6, 8173 (2015)] and their Borromean nature was confirmed by Tretyakov et al. [Phys. Rev. Lett. 119, 173402 (2017)]. We report the time dependence of the N-body Förster resonance N×36p3/2,|mj|=1/2→36s1/2+37s1/2+(N−2)×36p3/2,|mj|=3/2, for N=2, 3, and 4, by measuring the fraction of initially excited atoms that end up in the 37s1/2 state as a function of time. The essential features of these interactions are captured in an analytical model that includes only the many-body matrix elements and neighboring atom distribution. A more sophisticated simulation reveals the importance of beyond-nearest-neighbor interactions and of always-resonant interactions
    • …
    corecore