22 research outputs found
Fractional power-law susceptibility and specific heat in low temperature insulating state of o-TaS_{3}
Measurements of the magnetic susceptibility and its anisotropy in the
quasi-one-dimensional system o-TaS_{3} in its low-T charge density wave (CDW)
ground state are reported. Both sets of data reveal below 40 K an extra
paramagnetic contribution obeying a power-law temperature dependence
\chi(T)=AT^{-0.7}. The fact that the extra term measured previously in specific
heat in zero field, ascribed to low-energy CDW excitations, also follows a
power law C_{LEE}(0,T)=CT^{0.3}, strongly revives the case of random exchange
spin chains. Introduced impurities (0.5% Nb) only increase the amplitude C, but
do not change essentially the exponent. Within the two-level system (TLS)
model, we estimate from the amplitudes A and C that there is one TLS with a
spin s=1/2 localized on the chain at the lattice site per cca 900 Ta atoms. We
discuss the possibility that it is the charge frozen within a soliton-network
below the glass transition T_{g}~40 K determined recently in this system.Comment: 7 pages, 3 figures, submitted to Europhysics Letter
Low-temperature conductivity of quasi-one-dimensional conductors: Luttinger liquid stabilized by impurities
A new non-Fermi-liquid state of quasi-one-dimensional conductors is suggested
in which electronic system exists in a form of collection of bounded Luttinger
liquids stabilized by impurities. This state is shown to be stable towards
interchain electron hopping at low temperatures. Electronic spectrum of the
system contains zero modes and collective excitations of the bounded Luttinger
liquids in the segments between impurities. Zero modes give rise to randomly
distributed localized electronic levels, and long-range interaction generates
the Coulomb gap in the density of states at the Fermi energy. Mechanism of
conductivity at low temperatures is phonon-assisted hopping via zero-mode
states. At higher voltages the excitations of Luttinger liquid are involved in
electron transport, and conductivity obeys power-law dependence on voltage. The
results provide a qualitative explanation for recent experimental data for
NbSe3 and TaS3 crystals.Comment: 12 pages, 1 figur
Variable-range hopping in quasi-one-dimensional electron crystals
We study the effect of impurities on the ground state and the low-temperature
dc transport in a 1D chain and quasi-1D systems of many parallel chains. We
assume that strong interactions impose a short-range periodicicity of the
electron positions. The long-range order of such an electron crystal (or
equivalently, a charge-density wave) is destroyed by impurities. The 3D
array of chains behaves differently at large and at small impurity
concentrations . At large , impurities divide the chains into metallic
rods. The low-temperature conductivity is due to the variable-range hopping of
electrons between the rods. It obeys the Efros-Shklovskii (ES) law and
increases exponentially as decreases. When is small, the metallic-rod
picture of the ground state survives only in the form of rare clusters of
atypically short rods. They are the source of low-energy charge excitations. In
the bulk the charge excitations are gapped and the electron crystal is pinned
collectively. A strongly anisotropic screening of the Coulomb potential
produces an unconventional linear in energy Coulomb gap and a new law of the
variable-range hopping . remains
constant over a finite range of impurity concentrations. At smaller the
2/5-law is replaced by the Mott law, where the conductivity gets suppressed as
goes down. Thus, the overall dependence of on is nonmonotonic.
In 1D, the granular-rod picture and the ES apply at all . The conductivity
decreases exponentially with . Our theory provides a qualitative explanation
for the transport in organic charge-density wave compounds.Comment: 20 pages, 7 figures. (v1) The abstract is abridged to 24 lines. For
the full abstract, see the manuscript (v2) several changes in presentation
per referee's comments. No change in result
SPT 2004 - Symmetry and Perturbation Theory
SPT 2004
Symmetry and Perturbation Theory
30 May - 6 June 2004, Cala Gonone (Sardinia, Italy)
Scientific Committee:
S. Abenda (Bologna, I), D. Bambusi (Milano, I), G. Cicogna (Pisa, I),
A. Degasperis (Roma, I), G. Gaeta (Milano, I), V. Kuznetsov (Leeds, UK),
G. Marmo (Napoli, I), P. Olver (Minneapolis, USA), J.P. Ortega (Besan\ue7on, F),
S. Rauch (Linkoping, S), E. Sousa Dias (Lisboa, P), S. Terracini (Milano, I),
F. Verhulst (Utrecht, NL), S. Walcher (Aachen, D), B. Zhilinskii (Dunquerque, F)
Organizing Commitee:
A. Degasperis (Roma), G. Gaeta (Milano), B. Prinari (Lecce), S. Terracini (Milano)
The conference is the fifth of a series begun in 1996. The principal aim of the series of conference is to join together researchers from areas of pure and applied mathematics, physics and chemistry to present their most recent and innovative achievements in the field of symmetries, perturbation and integrable systems.
Conference proceedings are published by World Scientific