44 research outputs found
Effects of dexamethasone on the insulin-stimulated Akt phosphorylation.
<p>A): Both wild-type HEK293 and HEK293/tau441 cells were treated with 1 µM dexamethasone (DEX) for 1–6 days and then stimulated with 100 nM insulin (i) for 15 min. Representative immunoblots from the results on the third day (D3) and the sixth day (D6) after DEX treatment were shown. Bars representing means ± SEM were shown below. Total amounts of Akt remained stable under the conditions. In HEK293/tau441 cells, DEX prevented the insulin-stimulated increases in pAkt on D3 and D6. In wild-type HEK293 cells, the inhibitory effect of DEX was evident on D6 but not on D3. Each experiment was repeated three times unless stated otherwise. <sup>*</sup><i>P</i><0.05 versus control. B): Culture cells were pre-treated with mifepristone (RU; 20 µM, 30 min) and then treated with DEX for 3 days or 6 days. Representative immunoblots from wild-type HEK293 cells on D6 and those from HEK293/tau441 cells on D3 were shown, with bars representing means ± SEM below. Pre-treatment with RU prevented the inhibitory effects of DEX. <sup>*</sup><i>P</i><0.05 versus DEX group.</p
Effects of insulin on tau phosphorylation.
<p>HEK293/tau441 cells were pre-treated with LiCl (10 mM, 1 h) and then treated with DEX for 3 days, followed by stimulation of insulin for 15 min and Western analysis of Tau-1 and R134d. Bars representing means ± SEM. Insulin did not prevent the DEX-induced decrease in Tau-1 or affected Tau-1 levels under other conditions, suggesting that insulin does not affect tau phosphorylation. <sup>*</sup><i>P</i><0.05 versus control.</p
Involvement of μ-calpain in the inhibitory effect of DEX.
<p>A): Both wild-type HEK293 and HEK293/tau441 cells were pre-treated with LiCl (10 mM, 1 h) and then treated with DEX for 3 days (D3) or 6 days (D6). Activation of μ-calpain was determined by the ratios of the active/truncated calpain (78-kDa bands) and the inactive/full-length calpain (80-kDa bands). Bars representing means ± SEM. On D3 in HEK293/tau441 cells, DEX induced μ-calpain activation and pre-treatment with LiCl prevented the activation of μ-calpain. <sup>*</sup><i>P</i><0.05 versus control. B): HEK293/tau441 cells were pre-treated with E-64d (30 µg/ml, 1 h) or LiCl (10 mM, 1 h), and then treated with DEX for 3 days. The level of tau phosphorylation was determined by the ratio of Tau-1/R134d. Bars representing means ± SEM. E-64d did not have obvious effect on the DEX-induced increase in tau phosphorylation. <sup>*</sup><i>P</i><0.05 versus control, <sup>#</sup><i>P</i><0.05 between indicated groups. C) Both wild-type HEK293 and HEK293/tau441 cells were pre-treated with E-64d (30 µg/ml, 1 h) and then treated with DEX for 3 days (D3) or 6 days (D6), followed by stimulation of insulin and Western analysis of pAkt and Akt. Bars representing means ± SEM. Pre-treatment with E-64d prevented the inhibitory effect of DEX in HEK293/tau441 cells on D3. <sup>*</sup><i>P</i><0.05 versus control.</p
Effects of DEX and lithium chloride on tau phosphorylation.
<p>HEK293/tau441 cells were pre-treated with lithium chloride (LiCl; 10 mM, 1 h) and then treated with DEX for 3 days (D3) or 6 days (D6), followed by Western blotting analysis of tau phosphorylation with Tau-1 (against dephosphorylated tau within the epitope 189–207) and R134d (against total tau) antibodies. Total amounts of tau remained largely stable and the level of tau phosphorylation was determined by the Tau-1/R134d ratio. Bars representing means ± SEM. On D3, DEX induced an increase in tau phosphorylation, as evidenced by the decrease in the Tau-1/R134d ratio. Pre-treatment with LiCl prevented the effect of DEX on tau phosphorylation on D3. <sup>*</sup><i>P</i><0.05 versus control, <sup>#</sup><i>P</i><0.05 between indicated groups.</p
A Chinese version of the Language Screening Test (CLAST) for early-stage stroke patients
<div><p>There is a severe lack of aphasia screening tools for bedside use in Chinese. A number of aphasia assessment tools have recently been developed abroad, but some of these scales were not suitable for patients with acute stroke. The Language Screening Test (which includes two parallel versions [a/b]) in French has been proven to be an effective and time-saving aphasia screening scale for early-stage stroke patients. Therefore, we worked out a Chinese version of the LAST taking into consideration Chinese language and culture. Two preliminary parallel versions (a/b) were tested on 154 patients with stroke at acute phase and 107 patients with stroke at non-acute phase, with the Western Aphasia Battery serving as a gold standard. The equivalence between the two parallel versions and the reliability/validity of each version were assessed. The median time to complete one preliminary Chinese version (each had some item redundancy) was 98 seconds. Two final parallel versions were established after adjustment/elimination of the redundant items and were found to be equivalent (intra-class correlation coefficient: 0.991). Internal consistency is(Cronbach α for each version [a/b] was 0.956 and 0.965, respectively) good. Internal validity was fine: (a) no floor or ceiling effect/item redundancy; (b) construct validity revealed a 1-dimension structure, just like the French version. The higher educated subjects scored higher than their lower educated counterparts (<i>p<0</i>.<i>01</i>). The external validity: at the optimum cut-off point where the score of version a/b <14 in higher educated group(<13 in lower): the specificity of each version was 0.878/0.902(1/1 in lower) and sensitivity was 0.972/0.944(0.944/0.944 in lower). Inter-rater equivalence (intra-class correlation coefficient) was 1. The Chinese version of the Language Screening Test was proved to be an efficient and time-saving bedside aphasia screening tool for stroke patients at acute phase and can be used by an average medical physician.</p></div
Schematic representation of validation process of Chinese version of the Language Screening Test (CLAST).
<p>Please note that the floor and ceiling effects were assessed in aphasia group, and discrimination validity was assessed in the non-acute group.</p
The flow chart to administer aphasia scales in acute and non-acute stroke patients.
<p>The flow chart to administer aphasia scales in acute and non-acute stroke patients.</p
Baseline data of all patients, including the educational level of all patients(n = 261) and lesion sites of the non-acute patients(n = 107).
<p>Baseline data of all patients, including the educational level of all patients(n = 261) and lesion sites of the non-acute patients(n = 107).</p
Factor loading details of the 14 items with each version of CLAST.
<p>Rotated component matrix using the Generalized Least Squares analysis, limited the number of extracted factor to 1 in each version and Oblique rotations (n = 261).</p
Scatter diagram between Aphasia quotient (AQ) of the Western Aphasia Battery (WAB) and total scores of the Chinese version of the Language Screening Test (CLAST-a/CLAST-b).
<p>The correlation between AQ of WAB and total score of CLAST-a/CLAST-b is represented by blue circles and green circles, respectively.</p