4 research outputs found

    Laser Printing of Gel Microdrops with Living Cells and Microorganisms

    Get PDF
    We report the results of experiments on laser printing (wavelength λ=1064 nm) with gel microdrops acting as carriers of living microbial and cellular objects. The dynamics of transport processes with the help of high-speed optical video was studied, which allows to determine characteristics of the formed gel jets and to optimize the operating mode of the laser. It is shown that laser pulses of 4 to 20 ns duration and energy E ≤ 20 μJ should be used to minimize the negative effect on living systems. The results can be used to optimize the technologies of cellular printing and laser engineering of microbial systems (LEMS). LEMS technology is used to isolate hard-cultivated and non-cultivated by classical methods of microorganisms that can act as producers of new biologically active substances and antibiotics. Keywords: laser printing, gel, microdrop, living cell, microbia

    Theoretical and Experimental Assay of Shock Experienced by Yeast Cells during Laser Bioprinting

    No full text
    Laser-induced forward transfer (LIFT) is a useful technique for bioprinting using gel-embedded cells. However, little is known about the stresses experienced by cells during LIFT. This paper theoretically and experimentally explores the levels of laser pulse irradiation and pulsed heating experienced by yeast cells during LIFT. It has been found that only 5% of the cells in the gel layer adjacent to the absorbing Ti film should be significantly heated for fractions of microseconds, which was confirmed by the fact that a corresponding population of cells died during LIFT. This was accompanied by the near-complete dimming of intracellular green fluorescent protein, also observed in response to heat shock. It is shown that microorganisms in the gel layer experience laser irradiation with an energy density of ~0.1–6 J/cm2. This level of irradiation had no effect on yeast on its own. We conclude that in a wide range of laser fluences, bioprinting kills only a minority of the cell population. Importantly, we detected a previously unobserved change in membrane permeability in viable cells. Our data provide a wider perspective on the effects of LIFT-based bioprinting on living organisms and might provide new uses for the procedure based on its effects on cell permeability

    Upconversion Nanoparticles Intercalated in Large Polymer Micelles for Tumor Imaging and Chemo/Photothermal Therapy

    No full text
    Frontiers in theranostics are driving the demand for multifunctional nanoagents. Upconversion nanoparticle (UCNP)-based systems activated by near-infrared (NIR) light deeply penetrating biotissue are a powerful tool for the simultaneous diagnosis and therapy of cancer. The intercalation into large polymer micelles of poly(maleic anhydride-alt-1-octadecene) provided the creation of biocompatible UCNPs. The intrinsic properties of UCNPs (core@shell structure NaYF4:Yb3+/Tm3+@NaYF4) embedded in micelles delivered NIR-to-NIR visualization, photothermal therapy, and high drug capacity. Further surface modification of micelles with a thermosensitive polymer (poly-N-vinylcaprolactam) exhibiting a conformation transition provided gradual drug (doxorubicin) release. In addition, the decoration of UCNP micelles with Ag nanoparticles (Ag NPs) synthesized in situ by silver ion reduction enhanced the cytotoxicity of micelles at cell growth temperature. Cell viability assessment on Sk-Br-3, MDA-MB-231, and WI-26 cell lines confirmed this effect. The efficiency of the prepared UCNP complex was evaluated in vivo by Sk-Br-3 xenograft regression in mice for 25 days after peritumoral injection and photoactivation of the lesions with NIR light. The designed polymer micelles hold promise as a photoactivated theranostic agent with quattro-functionalities (NIR absorption, photothermal effect, Ag NP cytotoxicity, and Dox loading) that provides imaging along with chemo- and photothermal therapy enhanced with Ag NPs
    corecore