125 research outputs found

    Investigation of Stellar Kinematics and Ionized gas Outflows in Local [U]LIRGs

    Full text link
    We explore properties of stellar kinematics and ionized gas in a sample of 1106 local [U]LIRGs from the AKARI telescope. We combine data from $Wide-field\ Infrared\ Survey\ Explorer(WISE)andSloanDigitalSkySurvey(SDSS)DataRelease13(DR13)tofitthespectralenergydistribution(SED)ofeachsourcetoconstrainthecontributionofAGNtothetotalIRluminosityandestimatephysicalparameterssuchasstellarmassandstar−formationrate(SFR).WesplitoursampleintoAGNsandweak/non−AGNs.Wefindthatoursampleisconsiderablyabovethemainsequence.ThehighestSFRsandstellarmassesareassociatedwithULIRGs.WealsofittheH (WISE) and Sloan Digital Sky Survey (SDSS) Data Release 13 (DR13) to fit the spectral energy distribution (SED) of each source to constrain the contribution of AGN to the total IR luminosity and estimate physical parameters such as stellar mass and star-formation rate (SFR). We split our sample into AGNs and weak/non-AGNs. We find that our sample is considerably above the main sequence. The highest SFRs and stellar masses are associated with ULIRGs. We also fit the H\betaandH and H\alpharegionstocharacterizetheoutflows.WefindthattheincidenceofionizedgasoutflowsinAGN[U]LIRGs( regions to characterize the outflows. We find that the incidence of ionized gas outflows in AGN [U]LIRGs (\sim72%)ismuchhigherthanthatinweak/non−AGNones( 72\%) is much higher than that in weak/non-AGN ones (\sim39%).TheAGNULIRGshaveextremeoutflowvelocities(upto 39\%). The AGN ULIRGs have extreme outflow velocities (up to \sim2300kms 2300 km s^{-1})andhighmassoutflowrates(upto) and high mass outflow rates (up to \sim 60 \solarm~yr^{-1}$). Our results suggest that starbursts are insufficient to produce such powerful outflows. We explore the correlations of SFR and specific SFR (sSFR) with ionized gas outflows. We find that AGN hosts with the highest SFRs exhibit a negative correlation between outflow velocity and sSFR. Therefore, in AGNs containing large amounts of gas, the negative feedback scenario might be suggested.Comment: 20 pages, 14 figures, accepted for publication in Ap

    Production and Purification of a Novel Xanthan Lyase from a Xanthan-Degrading Microbacterium

    Get PDF
    A xanthan lyase was produced and purified from the culture supernatant of an excellent xanthan-modifying strain Microbacterium sp. XT11. Xanthan lyase was induced by xanthan but was inhibited by its structural monomer glucose. Its production by strain XT11 is much higher than that by all other reported strains. The purified xanthan lyase has a molecular mass of 110 kDa and a specific activity of 28.2 U/mg that was much higher than that of both Paenibacillus and Bacillus lyases. It was specific on the pyruvated mannosyl residue in the intact xanthan molecule, but about 50% lyase activity remained when xanthan was partially depyruvated. Xanthan lyase was optimally active at pH 6.0–6.5 and 40°C and alkali-tolerant at a high pH value of 11.0. The metal ions including K+, Ca2+, Na+, Mg2+, Mn2+, and Li+ strongly stimulated xanthan lyase activity but ions Zn2+ and Cu2+ were its inhibitor. Xanthan lyase should be a novel enzyme different from the other xanthan lyases ever reported

    The Antitumor Activities of Marsdenia tenacissima

    Get PDF
    Marsdenia tenacissima (MT), a traditional Chinese herbal medicine, has long been used for thousands of years to treat asthma, tracheitis, rheumatism, etc. An increasing number of recent studies have focused on the antitumor effects of MT. The effects of MT on cancer are the result of various activated signaling pathways and inhibiting factors and the high expression levels of regulatory proteins. MT can inhibit different cancer types including non-small cell lung cancer (NSCLC), malignant tumors, hepatic carcinoma, and so on. This article mainly focuses on the activities and mechanisms of MT. In addition, the efficacy and toxicity of MT are also discussed. Further studies of MT are required for improved medicinal utilization

    Dual Characters of GH-IGF1 Signaling Pathways in Radiotherapy and Post-radiotherapy Repair of Cancers

    Get PDF
    Radiotherapy remains one of the most important cancer treatment modalities. In the course of radiotherapy for tumor treatment, the incidental irradiation of adjacent tissues could not be completely avoided. DNA damage is one of the main factors of cell death caused by ionizing radiation, including single-strand (SSBs) and double-strand breaks (DSBs). The growth hormone-Insulin-like growth factor 1 (GH-IGF1) axis plays numerous roles in various systems by promoting cell proliferation and inhibiting apoptosis, supporting its effects in inducing the development of multiple cancers. Meanwhile, the GH-IGF1 signaling involved in DNA damage response (DDR) and DNA damage repair determines the radio-resistance of cancer cells subjected to radiotherapy and repair of adjacent tissues damaged by radiotherapy. In the present review, we firstly summarized the studies on GH-IGF1 signaling in the development of cancers. Then we discussed the adverse effect of GH-IGF1 signaling in radiotherapy to cancer cells and the favorable impact of GH-IGF1 signaling on radiation damage repair to adjacent tissues after irradiation. This review further summarized recent advances on research into the molecular mechanism of GH-IGF1 signaling pathway in these effects, expecting to specify the dual characters of GH-IGF1 signaling pathways in radiotherapy and post-radiotherapy repair of cancers, subsequently providing theoretical basis of their roles in increasing radiation sensitivity during cancer radiotherapy and repairing damage after radiotherapy

    Transposable element-initiated enhancer-like elements generate the subgenome-biased spike specificity of polyploid wheat

    Get PDF
    Transposable elements (TEs) comprise ~85% of the common wheat genome, which are highly diverse among subgenomes, possibly contribute to polyploid plasticity, but the causality is only assumed. Here, by integrating data from gene expression cap analysis and epigenome profiling via hidden Markov model in common wheat, we detect a large proportion of enhancer-like elements (ELEs) derived from TEs producing nascent noncoding transcripts, namely ELE-RNAs, which are well indicative of the regulatory activity of ELEs. Quantifying ELE-RNA transcriptome across typical developmental stages reveals that TE-initiated ELE-RNAs are mainly from RLG_famc7.3 specifically expanded in subgenome A. Acquisition of spike-specific transcription factor binding likely confers spike-specific expression of RLG_famc7.3-initiated ELE-RNAs. Knockdown of RLG_famc7.3-initiated ELE-RNAs resulted in global downregulation of spike-specific genes and abnormal spike development. These findings link TE expansion to regulatory specificity and polyploid developmental plasticity, highlighting the functional impact of TE-driven regulatory innovation on polyploid evolution
    • …
    corecore