26 research outputs found

    Features of Mineral Dust Aerosols collected in the Free Troposhere over Dunhuang, China

    Get PDF
    金沢大学大学院自然科学研究科Chinese Academy of ScienceSiberian Branch of Russian Academy熊本大学名古屋大学Promoting Environmental Pesearch in Pan-Japan Sea Area : Young Researchers\u27 Network, Schedule: March 8-10,2006,Kanazawa Excel Hotel Tokyu, Japan, Organized by: Kanazawa University 21st-Century COE Program, Environmental Monitoring and Prediction of Long- & Short- Term Dynamics of Pan-Japan Sea Area ; IICRC(Ishikawa International Cooperation Research Centre), Sponsors : Japan Sea Research ; UNU-IAS(United Nations University Institute of Advanced Studies)+Ishikawa Prefecture Government ; City of Kanazaw

    Distinct genes related to drug response identified in ER positive and ER negative breast cancer cell lines

    Get PDF
    Breast cancer patients have different responses to chemotherapeutic treatments. Genes associated with drug response can provide insight to understand the mechanisms of drug resistance, identify promising therapeutic opportunities, and facilitate personalized treatment. Estrogen receptor (ER) positive and ER negative breast cancer have distinct clinical behavior and molecular properties. However, to date, few studies have rigorously assessed drug response genes in them. In this study, our goal was to systematically identify genes associated with multidrug response in ER positive and ER negative breast cancer cell lines. We tested 27 human breast cell lines for response to seven chemotherapeutic agents (cyclophosphamide, docetaxel, doxorubicin, epirubicin, fluorouracil, gemcitabine, and paclitaxel). We integrated publicly available gene expression profiles of these cell lines with their in vitro drug response patterns, then applied meta-analysis to identify genes related to multidrug response in ER positive and ER negative cells separately. One hundred eighty-eight genes were identified as related to multidrug response in ER positive and 32 genes in ER negative breast cell lines. Of these, only three genes (DBI, TOP2A, and PMVK) were common to both cell types. TOP2A was positively associated with drug response, and DBI was negatively associated with drug response. Interestingly, PMVK was positively associated with drug response in ER positive cells and negatively in ER negative cells. Functional analysis showed that while cell cycle affects drug response in both ER positive and negative cells, most biological processes that are involved in drug response are distinct. A number of signaling pathways that are uniquely enriched in ER positive cells have complex cross talk with ER signaling, while in ER negative cells, enriched pathways are related to metabolic functions. Taken together, our analysis indicates that distinct mechanisms are involved in multidrug response in ER positive and ER negative breast cells. © 2012 Shen et al

    Tribological Properties of Carbon Fiber-Reinforced PEEK against 304 Stainless Steel with Reticulate Surface Texture

    No full text
    With the aim of improving the durability and reliability of polyetheretherketone (PEEK) composites reinforced with carbon fiber (CF) as thrust bearings without lubricants, a reticulate surface texture was fabricated by plane honing on a stainless steel (SS) counterpart to promote its tribological properties. Pin-on-disk experiments were designed, with the results showing that the reticulate surface texture effectively reduces the friction coefficient from 0.40 to 0.20 compared with the polished SS surface, within the range of the pv value from 0.185 to 1.85 MPa∙m/s. The wear mechanism of the polished SS surface against CF-PEEK, proven with SEM and EDS observations as well as AE measurements, is revealed, falling into abrasive wear with SS particles embedded in the friction interface around the CF strips, causing three-body contact. The reduction in the friction coefficient of the textured SS disk against the CF-PEEK pin can be achieved due to diminution of the CF wear debris and SS particles, which are scraped off by the groove edges and trapped by the groove valleys, reducing the three-body abrasive wear, while the honed plateau is used as a flank surface like a cutting tool to scratch more soft PEEK particles as the transferred film, owing to adhesive wear. This investigation suggests that the SS disk with a honed surface structure can be used as the counterpart of CF-PEEK bearings with a low friction coefficient and wear rate under dry friction

    Green coal mining under buildings by overburden grout injection for coalmine sustainable development of central China

    No full text
    Coal will occupy the main position in China's energy structure for a long time, and the negative externalities of its exploitation have a serious impact on the ground surface and its appurtenances. With the proposal of the dual carbon strategy, the coal-based energy determines that green and safe coal mining should be the priority direction of China's energy development. Taking Xinyi coalmine, which is mined in unstable coal seams with large mining depth, as the research area, the surface response characteristic and subsidence law under the different mining degrees were clarified. Meanwhile, the damage mechanism of buildings was revealed, which was from no obvious damage to Grade Ⅳ under the extremely insufficient mining to subcritical mining. Based on the sustainable development and green production in coalmines, the overburden grout injection technique under buildings that does not affect the normal production was proposed, and its technical principle was described. A weighted grey relational analysis model was established, and obtained that the panel width was the main factor affecting the overburden failure height under subcritical mining. According to the definition of overburden failure degree proposed by the author, the feasibility of overburden grout injection technique under buildings was analyzed and the key parameters, such as slurry diffusion radius, borehole position and depth, grouting system and technology, were determined and successfully applied. The engineering application shows that the maximum surface subsidence after grouting is 253 mm, and the building damage is within the Grade I. Meanwhile, 5.82 Mt of coal resources under the buildings have been liberated, which realizes high quality coal mining, low environmental damage, green and low-carbon, and also provides a reference for the sustainable development of coal enterprises, especially for the exhausted coalmines that recover coal pillars

    Facile Synthesis of Zinc Indium Oxide Nanofibers Distributed with Low Content of Silver for Superior Antibacterial Activity

    No full text
    Exploring new antibacterial materials is of great significance for limiting the transmission of germs and protecting human health. Although Ag and oxide nanoparticles have both been extensively used in the field of antibacterial, it is still urgently need to figure out how to combine their characteristics for sterilization. Herein, ZnO/In2O3‐Ag nanofibers are prepared with uniformly dispersed Ag through a facile method of electrospinning and subsequent sintering. The obtained nanofibers are of high purity and have diameters from 90 to 110 nm. The silver is in a zero‐valent state, which is beneficial for sterilization. The quantitative test of bacterial activity shows that the nanofibers are bactericidal for both Staphylococcus aureus and Escherichia coli, with an especially strong inhibitory effect on E. coli. At relatively low concentrations, 98% of E. coli can be killed. Herein, light is shed on exploring more complexes of oxide nanomaterials and Ag for sterilization

    Seasonal variation, spatial distribution and source apportionment for polycyclic aromatic hydrocarbons (PAHs) at nineteen communities in Xi'an, China: The effects of suburban scattered emissions in winter

    No full text
    Seasonal variation and spatial distribution of PM2.5 bound polycyclic aromatic hydrocarbons (PAHs) were investigated at urban residential, commercial area, university, suburban region, and industry in Xi'an, during summer and winter time at 2013. Much higher levels of total PAHs were obtained in winter. Spatial distributions by kriging interpolations principle showed that relative high PAHs were detected in western Xi'an in both summer and winter, with decreasing trends in winter from the old city wall to the 2nd-3rd ring road except for the suburban region and industry. Coefficients of diversity and statistics by SPSS method demonstrated that PAHs in suburban have significant differences (t < 0.05) with those in urban residential in both seasons. The positive Matrix Factorization (PMF) modeling indicated that biomass burning (31.1%) and vehicle emissions (35.9%) were main sources for PAHs in winter and summer in urban, which different with the suburban. The coal combustion was the main source for PAHs in suburban region, which accounted for 46.6% in winter and sharp decreased to 19.2% in summer. Scattered emissions from uncontrolled coal combustion represent an important source of PAHs in suburban in winter and there were about 135 persons in Xi'an will suffer from lung cancer for lifetime exposure at winter levels. Further studies are needed to specify the effluence of the scattered emission in suburban to the city and to develop a strategy for controlling those emissions and lighten possible health effects. (C) 2017 Elsevier Ltd. All rights reserved
    corecore