206 research outputs found

    Abnormal Alterations of Regional Spontaneous Neuronal Activity in Inferior Frontal Orbital Gyrus and Corresponding Brain Circuit Alterations: A Resting-State fMRI Study in Somatic Depression

    Get PDF
    Background: Major depressive disorders often involve somatic symptoms and have been found to have fundamental differences from non-somatic depression (NSD). However, the neural basis of this type of somatic depression (SD) is unclear. The aim of this study is to use the amplitude of low-frequency fluctuation (ALFF) and functional connectivity (FC) analyses to examine the abnormal, regional, spontaneous, neuronal activity and the corresponding brain circuits in SD patients.Methods: 35 SD patients, 25 NSD patients, and 27 matched healthy controls were selected to complete this study. The ALFF and seed-based FC analyses were employed, and the Pearson correlation was determined to observe possible clinical relevance.Results: Compared with NSD, the SD group showed a significant ALFF increase in the right inferior temporal gyrus; a significant ALFF decrease in left hippocampus, right inferior frontal orbital gyrus and left thalamus; and a significant decrease in the FC value between the right inferior frontal orbital gyrus and the left inferior parietal cortex (p < 0.05, corrected). Within the SD group, the mean ALFF value of the right inferior frontal orbital gyrus was associated with the anxiety factor scores (r = –0.431, p = 0.010, corrected).Conclusions: Our findings suggest that abnormal differences in the regional spontaneous neuronal activity of the right inferior frontal orbital gyrus were associated with dysfunction patterns of the corresponding brain circuits during rest in SD patients, including the limbic-cortical systems and the default mode network. This may be an important aspect of the underlying mechanisms for pathogenesis of SD at the neural level

    TPH-2 Gene Polymorphism in Major Depressive Disorder Patients With Early-Wakening Symptom

    Get PDF
    Background: Sleep disturbances, such as early wakening, are frequently observed in patients with major depressive disorder (MDD). The suprachiasmatic nuclei (SCN), which controls circadian rhythm, is innervated by the raphe nucleus, a region where Tryptophan hydroxylase-2 (TPH-2) gene is primarily expressed. Although TPH-2 is often implicated in the pathophysiology of depression, few studies have applied a genetic and imaging technique to investigate the mechanism of early wakening symptom in MDD. We hypothesized that TPH-2 variants could influence the function of SCN in MDD patients with early wakening symptom.Methods: One hundred and eighty five MDD patients (62 patients without early wakening and 123 patients with early wakening) and 64 healthy controls participated in this study. Blood samples were collected and genotyping of rs4290270, rs4570625, rs11178998, rs7305115, rs41317118, and rs17110747 were performed by next-generation sequencing (NGS) technology. Logistic regression model was employed for genetic data analysis using the PLINK software. Based on the allele type, rs4290270, which was significant in the early wakening MDD group, participants were categorized into two groups (A allele and T carrier). All patients underwent whole brain resting-state functional magnetic resonance imaging (rs-fMRI) scanning and a voxel-wise functional connectivity comparison was performed between the groups.Results: rs4290270 was significantly linked to MDD patients who exhibited early wakening symptom. The functional connectivities of the right SCN with the right fusiform gyrus and right middle frontal gyrus were increased in the T carrier group compared to the A allele group. In addition, the functional connectivities of the left SCN with the right lingual gyrus and left calcarine sulcus were decreased in the T carrier group compared to the A allele group.Conclusion: These findings suggested that the TPH-2 gene variant, rs4290270, affected the circadian regulating function of SCN. The altered functional connectivities, observed between the SCN and right fusiform gyrus, right middle frontal gyrus, the right lingual gyrus and left calcarine sulcus, could highlight the neural mechanism by which SCN induces sleep-related circadian disruption in T carrier MDD patients. Hence, rs4290270 could potentially serve as a reliable biomarker to identify MDD patients with early wakening symptom

    Giant Enhancement of Magnonic Frequency Combs by Exceptional Points

    Full text link
    With their incomparable time-frequency accuracy, frequency combs have significantly advanced precision spectroscopy, ultra-sensitive detection, and atomic clocks. Traditional methods to create photonic, phononic, and magnonic frequency combs hinge on material nonlinearities which are often weak, necessitating high power densities to surpass their initiation thresholds, which subsequently limits their applications. Here, we introduce a novel nonlinear process to efficiently generate magnonic frequency combs (MFCs) by exploiting exceptional points (EPs) in a coupled system comprising a pump-induced magnon mode and a Kittel mode. Even without any cavity, our method greatly improves the efficiency of nonlinear frequency conversion and achieves optimal MFCs at low pump power. Additionally, our novel nonlinear process enables excellent tunability of EPs using the polarization and power of the pump, simplifying MFC generation and manipulation. Our work establishes a synergistic relationship between non-Hermitian physics and MFCs, which is advantages for coherent/quantum information processing and ultra-sensitive detection.Comment: 7 pages, 4 figure

    Topological Properties of Brain Structural Networks Represent Early Predictive Characteristics for the Occurrence of Bipolar Disorder in Patients With Major Depressive Disorder: A 7-Year Prospective Longitudinal Study

    Get PDF
    Bipolar disorder (BD) and major depressive disorder (MDD) are associated with different brain functional and structural abnormalities, but BD is hard to distinguish from MDD until the first manic or hypomanic episode. The aim of this study was to examine whether the topological properties of the brain structural network could be used to differentiate BD from MDD patients before their first manic/hypomanic episode. Diffusion tensor images were collected from 80 MDD patients and 53 healthy controls (HCs); 78 patients completed the follow-up study lasting 7 years. Among them, 12 patients were converted to BD and 64 patients remained MDD. Topological properties of the brain structural networks at baseline were compared among patients who converted to BD, patients who did not develop BD, and HCs. Patients who converted to BD displayed reduced nodal local efficiency in the left inferior frontal gyrus(IFG) compared with HCs and patients who did not convert to BD. There was no significant difference in the nodal global efficiency among the three groups. The findings suggest that the nodal local efficiency in the left IFG could serve as a potential biomarker to predict the conversion of MDD to BD before the occurrence of the first manic or hypomanic episode
    • …
    corecore