300 research outputs found
Transistors as an Emerging Platform for Portable Amplified Biodetection in Preventive Personalized PointâofâCare Testing
The impressive improvement in biomolecular detection has gone from simple chemical methods to sophisticated high throughput laboratory machines capable of accurately measuring the complex biological components and interactions. In the following chapter, we focus our attention on transistorâbased devices as an emerging platform for easyâtoâuse, portable amplified biodetection for preventive personalized medical applications and pointâofâcare testing. Electronic sensing devices comprise biosensors based on fieldâeffect transistors (bioâFETs) and organic electrochemical transistors (OECTs). Transistor sensing devices can transduce electronic and ionic signals thereby creating an effective humanâmachine communication channel. In this chapter, we survey the progress done on the development of transistor innovative concepts to examine biological processes, i.e., biosensors integrated with textiles, flexible substrates, and biocompatible materials. Electrochemical and fieldâeffect transistors can operate at low voltages possibly serving for highly sensitive, selective, and realâtime sensing devices. The exploration of biosensors integrates different disciplines such as organic electronics, biology, electrochemistry, and materials science
New Materials and Processing Routes for Organic Electrochemical Transistors
La bioĂ©lectronique est un domaine pluridisciplinaire dont lâobjectif est le couplage des dispositifs
Ă©lectroniques avec les systĂšmes biologiques. La bioĂ©lectronique vise lâexploitation des dispositifs
électroniques pour des applications biologiques, comme les systÚmes de livraison de médicament
implantables, la peau artificielle, ou encore les capteurs capables dâopĂ©rer in vivo ou in vitro. Les
interfaces entre la biologie et lâĂ©lectronique nĂ©cessitent des dispositifs qui soient Ă la fois
mécaniquement flexibles et étirables, chimiquement inertes, ainsi que, dans certains cas,
biodégradables. La bioélectronique basée sur des matériaux organiques, ou bioélectronique
organique, donne les moyens technologiques de produire des dispositifs Ă©lectroniques
mécaniquement flexibles ou dégradables, le tout à faible coût sur de larges surfaces.
Les recherches intensives dans le domaine de lâĂ©lectronique organique ont commencĂ© dans les
annĂ©es â90, avec les premiĂšres diodes Ă©lectroluminescentes, transistors ainsi que cellules
photovoltaïques basés sur des matériaux organiques. Les dispositifs électroniques organiques
deviennent omniprĂ©sents dans notre sociĂ©tĂ© moderne avec lâintroduction sur le marchĂ© dâĂ©crans
basĂ©s sur lâutilisation de diodes Ă©lectroluminescentes pour les tĂ©lĂ©phones cellulaires, les
tĂ©lĂ©visions et dâautres produits commerciaux. Dâautres dispositifs Ă©lectroniques organiques, tels
que les transistors organiques pour les tags dâidentification radiofrĂ©quence, devraient faire Ă leur
tour une entrée sur le marché dans un futur proche. Les matériaux organiques électroniques
prĂ©sentent plusieurs avantages sur leurs homologues inorganiques, ce qui les rend plus adaptĂ©s Ă
certaines applications spĂ©cifiques. Lâun des avantages les plus importants rĂ©side sans doute dans
la capacité des matériaux organiques électroniques à transporter les porteurs de charge ioniques et
Ă©lectroniques, pour pouvoir dĂ©velopper de nouveaux dispositifs faisant lâinterface avec les
systÚmes biologiques. Le transistor organique électrochimique (OECT), qui a trouvé de
nombreuses applications dans les biocapteurs ou dans les dispositifs implantables, en est un bon
exemple. Les OECTs offrent la capacité prometteuse à opérer à de faibles voltages (<1 V) en
solutions aqueuses, oĂč les procĂ©dĂ©s biologiques ont lieu. Les OECTs peuvent ĂȘtre rĂ©alisĂ©s
entiĂšrement Ă lâaide de polymĂšres conducteurs et sont composĂ©s dâĂ©lectrodes appelĂ©es source et
drain, ainsi que dâun canal en contact ionique avec une Ă©lectrode appelĂ©e grille via une solution
électrolytique. Le potentiel appliqué à la grille module le courant qui circule dans le canal. Dans
ix
la plupart des OECTs, lâapplication dâune diffĂ©rence de potentiel positive Ă la grille induit une
redistribution rĂ©versible des ions positifs Ă lâintĂ©rieur du polymĂšre conducteur composant le canal,
ainsi quâĂ lâintĂ©rieur de lâĂ©lectrolyte. Ceci, couplĂ© avec lâinjection de charges par la source et le
drain, rĂ©sulte en un dĂ©dopage Ă©lectrochimique du canal conducteur, qui sâaccompagne dâune
diminution du courant source-drain.
Dans cette thĂšse, nous dĂ©crivons la fabrication de diffĂ©rents types dâOECTs, rigides, flexibles ou
encore dégradables, sur des substrats de verre, de plastique ou de shellac dégradable. Des
techniques non-conventionnelles comme la gravure sur parylĂšne et la photolithographie
orthogonale ont Ă©tĂ© utilisĂ©es pour la fabrication des dispositifs. Ces mĂ©thodes permettent dâĂ©viter
le contact direct entre les matĂ©riaux organiques et dâautres matĂ©riaux (i.e. les photorĂ©sines, les
solvants et les décapants) typiquement utilisés en photolithographie, évitant ainsi une dégradation
des propriétés électriques. Afin de mieux comprendre le mécanisme de fonctionnement des
OECTs, qui est toujours largement mĂ©connu, ainsi que dâoptimiser leurs performances, nous
avons Ă©tudiĂ© le rĂŽle de leurs composants clĂ©, i.e. lâĂ©lectrolyte, lâĂ©lectrode de grille et le substrat.
Nous avons aussi exploré la possibilité de fabriquer un dispositif flexible intégrant un transistor et
un supercondensateur, qui pourrait ĂȘtre intĂ©ressant pour des applications dans le domaine du
micro-stockage dâĂ©nergie.
Les liquides ioniques (ILs) sont des candidats intéressants pour servir de milieu de grille (gating
medium) dans les OECTs. Néanmoins, les ILs présentent une viscosité excessivement élevée qui
empĂȘche de les utiliser directement dans les OECTs. Nous rapportons ici deux approches
permettant dâutiliser le liquide ionique hautement visqueux triisobutyl(mĂ©thyl)phosphonium
tosylate (CyphosŸ IL 106) dans des OECTs basés sur le poly(3,4-éthylÚnedioxythiophÚne)
polystyrĂšnesulfonate (PEDOT:PSS). Ces deux approches sont lâutilisation dâun mĂ©lange binaire
IL-H2O et lâutilisation de gels ioniques. Ces formulations du milieu de grille mĂšnent Ă une
augmentation de la modulation de lâOECT, comparativement aux rĂ©sultats obtenus avec le
liquide ionique pur. En utilisant des grilles en carbone activé de grande surface, des ratios
ON/OFF allant jusquâĂ 5000 ont Ă©tĂ© obtenus avec les mĂ©langes CyphosÂź IL 106âH2O Ă 5% et 10%
de H2O, v/v.
Des OECTs planaires utilisant du PEDOT:PSS comme matériau pour le canal, du carbone
nanostructurĂ© comme matĂ©riau pour lâĂ©lectrode de grille et du gel poly(sodium 4-styrĂšnesulfonate)
x
(PSSNa) comme électrolyte ont été fabriqués sur des substrats flexibles de poly(téréphtalate
d'éthylÚne) (MylarŸ). Le carbone nanostructuré a été déposé à température ambiante par
dĂ©position supersonique de faisceaux en agrĂ©gats (SCBD). LâOECT rĂ©sultant se comporte
comme un supercondensateur hybride (ce qui donne un dispositif que nous avons appelé
transcap). La capacitĂ© Ă stocker lâĂ©nergie des transcaps a Ă©tĂ© Ă©tudiĂ©e dans deux configurations :
lâune utilise le PEDOT:PSS comme Ă©lectrode positive et le carbone nanostructurĂ© comme
électrode negative, tandis que la deuxiÚme configuration inverse la polarité des électrodes. Les
études de la charge/décharge potentiostatique révÚlent que les deux supercondensateurs montrent
de bonnes performances en termes de rétention de voltage. Ceci est particuliÚrement vrai quand
du PEDOT:PSS est utilisé comme électrode positive. Les caractéristiques de la charge/décharge
galvanostatique présentent une forme triangulaire symétrique typique, ce qui indique un
comportement capacitif quasiment idéal, avec une haute efficacité coulombienne (proche de
100%).
Enfin, nous avons dĂ©veloppĂ© des OECTs âvertsâ, qui emploient des substrats dĂ©gradables et de
lâeau comme milieu de grille. Des OECTs fabriquĂ©s sur du PET (polytĂ©rĂ©phtalate dâĂ©thylĂšne) ont
Ă©tĂ© transfĂ©rĂ©s sur un substrat de shellac par transfer printing. Afin dâĂ©tudier lâeffet de grille en
prĂ©sence dâeau comme milieu de grille, nous avons utilisĂ© une Ă©lectrode de grille en carbone
activĂ© ainsi quâune Ă©lectrode de grille en PEDOT:PSS. Les rĂ©sultats ont montrĂ© que les OECTs
utilisant des grilles en carbone activé présentent une réponse en courant plus lente et une
modulation de courant plus Ă©levĂ©e que les grilles en PEDOT:PSS. Le substrat en shellac peut ĂȘtre
dégradé en utilisant une solution de KOH à une concentration 1 M.
Nos études sur différents électrolytes, grilles de grande surface spécifique et substrats ont permis
des avancées significatives dans le domaine des OECTs, qui vont mener vers de nouvelles
applications in vivo et in vitro. De plus, les OECTs peuvent ĂȘtre utilisĂ©s comme des dispositifs de
stockage dâĂ©nergie. Le concept de transcap intĂ©grant un transistor organique Ă©lectrochimique et
un supercondensateur peut ĂȘtre davantage optimisĂ© pour obtenir des temps de rĂ©ponse plus
rapides et une autodécharge plus faible, ainsi que des propriétés électriques et de stockage
dâĂ©nergie optimisĂ©es.
----------
Organic electronics, which use thin films or single crystals of organic Ï-conjugated materials as
semiconductors, enable technologies for large-area, mechanically flexible and low-cost
electronics.
Intense research in organic electronics started in the 90s, with the demonstration of the first lightemitting
diodes, transistors and solar cells based on organic materials. Today, such devices are
becoming ubiquitous in our society as they can be found in displays based on organic lightemitting
diodes in mobile phones, televisions and many other consumer devices. Other organic
electronic devices, such as transistors for radio frequency identification tags, are expected to enter
the market in the near future. Organic electronic materials present several advantages over
inorganic ones, which make them more viable for targeted applications. One the most significant
advantages of organic materials is their ability to transport both ionic and electronic charges,
which can be exploited in bioelectronics, a multidisciplinary field that deals with the coupling of
electronic devices with biological systems.
The primary goal of bioelectronics is to exploit electronic devices for biological applications,
such as implants, drug delivery systems, artificial skin, and sensors for in vivo or in vitro
environments. Interfaces between biological systems and electronics require devices that are
mechanically flexible and stretchable, chemically inert and in some cases biodegradable.
Bioelectronics based on organic materials, known as organic bioelectronics, especially promising
because promise to yield devices that are able to combine ionic and electronic transport and to
offer improved mechanical interfaces with living tissues, due to the soft nature of the polymer
surface.
An example of a bioelectronic device is the organic electrochemical transistor (OECT), which
has found applications in biosensors and implantable devices. OECTs are attractive because of
their ability to operate at low voltages (< 1 V) in aqueous solutions, where biological processes
take place. OECTs can be composed solely of conducting polymers and consist of source and
drain electrodes and a channel in ionic contact with a gate electrode via an electrolyte solution.
vi
The gate voltage modulates the current flowing in the channel. In most OECTs, the application of
a positive gate bias induces a reversible redistribution of positive ions within the conducting
polymer channel and the electrolyte. This, together with charge injection from source and drain,
results in electrochemical dedoping of the conducting channel, accompanied by a decrease of the
source-drain current.
In this thesis, we have fabricated rigid, flexible and degradable OECTs on glass, plastics and
degradable shellac substrates. Unconventional techniques such as parylene patterning and
orthogonal photolithography have been used for device fabrication. These processing techniques
let us avoid placing organic materials in contact with other materials (such as photoresists,
solvents and strippers) typically used in photolithography, which can result in the degradation of
the electrical properties of the organics. To understand how OECTs work and to optimize their
performance, we have investigated the role of their main components (electrolyte, gate electrode
and substrate). Moreover, we have realized a flexible device integrating a transistor and a
supercapacitor, for applications in energy micro-storage.
Ionic liquids (ILs) are interesting candidates as gating media in OECTs. However, ILs can exhibit
excessively high viscosity that prevents their straightforward use. We report two ways to employ
the highly viscous ionic liquid triisobutyl(methyl)phosphonium tosylate (CyphosÂź IL 106) in
OECTs based on poly(3,4-ethylenedioxythiophene) polystyrenesulfonate (PEDOT:PSS), namely
ILâH2O binary mixtures and ion gels. The use of these formulations as gating media increases the
OECT modulation with respect to experiments where pure ionic liquids are used. Using high
surface area activated carbon gates, we achieved ON/OFF ratios as high as 5000 with CyphosÂź
IL 106âH2O mixtures at 5 and 10% H2O v/v.
Planar OECTs using PEDOT:PSS as the channel material, nanostructured carbon as the gate
electrode material and poly(sodium 4-styrenesulfonate (PSSNa) gel as the electrolyte were
fabricated on flexible polyethylene terephthalate (MylarÂź) substrates. Nanostructured carbon was
deposited at room temperature by supersonic cluster beam deposition (SCBD). Interestingly, the
OECT acts as a hybrid supercapacitor to give a device that we called transcap. The energy
storage ability of transcaps has been studied with two configurations: one features PEDOT:PSS
vii
as the positive electrode and nanostructured carbon as the negative electrode; the other has a
reversed electrode polarity. Potentiostatic charge/discharge studies show that both
supercapacitors show good performance in terms of voltage retention, particularly when
PEDOT:PSS is used as the positive electrode. Galvanostatic charge-discharge characteristics
show typical symmetric triangular shape, indicating a nearly ideal capacitive behaviour with a
columbic efficiency close to 100%.
Finally, we developed âgreenâ OECTs, which employ degradable substrates and water as the
gating medium. OECTs were patterned onto degradable shellac substrates by transfer printing. To
explore the gate effect in presence of water as the gating medium, we have employed AC gate
electrodes and PEDOT:PSS gate electrodes. Results indicate that OECTs with AC gates have
slower current response and higher current modulation than those with PEDOT:PSS gates. The
shellac substrate can be degraded in 1 M KOH solution.
Our study of various electrolytes, high specific surface area gates and diverse substrates has
significantly advanced the knowledge in the field of OECTs, thereby paving the way to
applications in vivo and in vitro. Interestingly, OECTs can be used as energy storage devices.
The concept of a transcap integrating an organic electrochemical transistor and a supercapacitor
can be further optimized to achieve faster time responses, decreased self-discharge and optimized
electrical and energy storage properties
Safe storage guidelines for soybeans at different temperatures and moisture contents: Poster
Poor storage capacity of soybean makes it prone to fungal spoilage and heating during storage, resulting in lower quality. Early prediction of the fungal spoilage in stored soybeans is very difficult because fungi are often too small to be seen with the naked eye. Here a new method for fungus to early detection is adopted: it is called counting fungal spores. Soybeans with moisture contents of 11.4, 12.1, 13.0, 13.9, 14.3 and 14.7%, were held at 6 temperatures 10, 15, 20, 25, 30 and 35? for180d. Samples were taken at regular intervals and the fungal spores counted. The safe storage conditions (temperature, moisture content, duration) were estimated by means of a curve fitted using the power function fitting. It can predict of soybean spoilage by fungus before there is visible damage.Poor storage capacity of soybean makes it prone to fungal spoilage and heating during storage, resulting in lower quality. Early prediction of the fungal spoilage in stored soybeans is very difficult because fungi are often too small to be seen with the naked eye. Here a new method for fungus to early detection is adopted: it is called counting fungal spores. Soybeans with moisture contents of 11.4, 12.1, 13.0, 13.9, 14.3 and 14.7%, were held at 6 temperatures 10, 15, 20, 25, 30 and 35? for180d. Samples were taken at regular intervals and the fungal spores counted. The safe storage conditions (temperature, moisture content, duration) were estimated by means of a curve fitted using the power function fitting. It can predict of soybean spoilage by fungus before there is visible damage
Tackling the Problem of Dangerous Radiation Levels with Organic Field-Effect Transistors
Accurate, quantitative measurements of ionizing radiation, commonly employed in medical diagnostic and therapeutic applications are essential prerequisites to minimize exposure risks. Common examples of radiation detectors include ionization chambers, thermoluminescent dosimeters, and various semiconductor detectors. Semiconductor dosimeters such as p/n type silicon diodes and MOSFETs have found widespread adoption due to their high sensitivity and easy processing. A significant limitation of these devices, however, is their lack of tissue equivalence. The high atomic number (relative to soft tissue) of silicon causes these devices to over-respond to photon beams that include a significant low energy component, for example, 1â10Â kV, due to an enhanced photoelectric interaction coefficient. Organic field effect transistors (OFETs) are capable of providing tissue equivalent response to ionizing radiation in order to monitor more accurately the risk of exposure in medical treatments. This chapter presents the possibility to use different types of OFETs as ionizing and X-ray radiation dosimeters in medical applications
Poly[[diaqua-ÎŒ2-4,4âČ-bipyridyl-ÎŒ2-o-phthalato-nickel(II)] dihydrate]
In the title layer complex, {[Ni(C8H4O4)(C10H8N2)(H2O)2]·2H2O}n, the Ni atom has a distorted octaÂhedral environment, defined by the phthalate and 4,4âČ-bipyridyl ligands which link the Ni atoms, forming a square lattice in the bc plane. This extends into a three-dimensional supraÂmolecular network through OâHâŻO hydrogen-bonding interÂactions. The Ni atom lies on, and both ligands are bisÂected by, a crystallographic twofold axis
Poly[bisÂ(2,2âČ-bipyridine-Îș2 N,NâČ)deca-ÎŒ-oxido-dioxidodicopper(II)tetraÂvanadium(V)]
The title compound, [Cu2V4O12(C10H8N2)2]n, shows a two-dimensional copperâvanadate layer composed of eight-membered rings, each containing four corner-sharing VO4 tetraÂhedra; these are linked through six pentaÂcoordinated CuII atoms with the 2,2âČ-bipyridine ligands attached and pointing above and below the plane of the layer. The Cu atom is coordinated by two N donors from the 2,2âČ-bipyridine ligand and three O atoms from three adjacent VO4 units to form a distorted tetragonal pyramid. These layers are further connected by ÏâÏ interÂactions between interÂleaving bipyridine ligands of adjacent layers [centroidâcentroid distances = 3.63â
(1) and 3.68â
(1)â
Ă
] into a three-dimensional supraÂmolecular structure
A New Architecture for Application-aware Cognitive Multihop Wireless Networks
In this article, we propose a new architecture for AC-MWN. Cognitive radio is a technique to adaptively use the spectrum so that the resource can be used more efficiently in a low-cost way. A multihop wireless network can be deployed quickly and flexibly without fixed infrastructure. In our proposed new architecture, we study backbone routing schemes with network cognition, and a routing scheme with network coding and spectrum adaptation. A testbed is implemented to test the proposed schemes for AC-MWN. In addition to basic measurements, we implement a video streaming application based on the proposed AC-MWN architecture using cognitive radios. Preliminary results demonstrate that the proposed AC-MWN is applicable, and is valuable for future low-cost and flexible communication networks
- âŠ