2,428 research outputs found
Quantifying jet transport properties via large hadron production
Nuclear modification factor for large single hadron is studied
in a next-to-leading order (NLO) perturbative QCD (pQCD) parton model with
medium-modified fragmentation functions (mFFs) due to jet quenching in
high-energy heavy-ion collisions. The energy loss of the hard partons in the
QGP is incorporated in the mFFs which utilize two most important parameters to
characterize the transport properties of the hard parton jets: the jet
transport parameter and the mean free path , both at
the initial time . A phenomenological study of the experimental data
for is performed to constrain the two parameters with
simultaneous fits to RHIC as well as LHC data. We obtain
for energetic quarks GeV/fm and
fm in central collisions at
GeV, while GeV/fm, and
fm in central collisions at
TeV. Numerical analysis shows that the best fit favors a
multiple scattering picture for the energetic jets propagating through the bulk
medium, with a moderate averaged number of gluon emissions. Based on the best
constraints for and , the estimated value for the
mean-squared transverse momentum broadening is moderate which implies that the
hard jets go through the medium with small reflection.Comment: 8 pages, 6 figures, revised versio
Guest Editorial: Nonlinear Optimization of Communication Systems
Linear programming and other classical optimization techniques have found important applications in communication systems for many decades. Recently, there has been a surge in research activities that utilize the latest developments in nonlinear optimization to tackle a much wider scope of work in the analysis and design of communication systems. These activities involve every “layer” of the protocol stack and the principles of layered network architecture itself, and have made intellectual and practical impacts significantly beyond the established frameworks of optimization of communication systems in the early 1990s. These recent results are driven by new demands in the areas of communications and networking, as well as new tools emerging from optimization theory. Such tools include the powerful theories and highly efficient computational algorithms for nonlinear convex optimization, together with global solution methods and relaxation techniques for nonconvex optimization
Dynamic expression of cytokine and transcription factor genes during experimental Fasciola gigantica infection in buffaloes
Background
Determining the mechanisms involved in the immune-pathogenesis of the tropical liver fluke, Fasciola gigantica, is crucial to the development of any effective therapeutic intervention. Here, we examined the differential gene expression of cytokines and transcription factors in the liver of F. gigantica-infected buffaloes, over the course of infection.
Methods
Water buffaloes (swamp type) were infected orally with 500 F. gigantica encysted metacercariae. Liver tissue samples were collected 3, 10, 28, 42, 70 and 98 days post-infection (dpi). Levels of gene expression of nine cytokines (IFN-γ, TGF-β, IL-1β, IL-4, IL-6, IL-10, IL-12B, IL-13 and IL-17A) and four transcription factors (T-bet, GATA-3, Foxp3 and ROR-γτ) were determined using quantitative real-time PCR (qRT-PCR). We evaluated any correlation between gene expression of these immune-regulatory factors and the severity of liver pathology.
Results
Histopathological examination revealed that cellular infiltration, hemorrhage and fibrosis without calcification in the liver parenchyma of infected buffaloes, increased over the course of infection. This progressive pathology was attributed to dysregulated and excessive inflammatory responses induced by infection. The early infection phase (3–10 dpi) was marked by a generalized immunosuppression and elevated TGF-β expression in order to facilitate parasite colonization. A mixed Th1/Th2 immune response was dominant from 28 to 70 dpi, to promote parasite survival while minimizing host tissue damage. During late infection (98 dpi), the response was biased towards Th1/Treg in order to inhibit the host’s Th2 protective response and promote chronic infection. Both IL-10 and IL-17A and the Th17/Treg balance, played key roles in mediating the inflammatory and immunoregulatory mechanisms in the liver during chronic fasciolosis.
Conclusions
Our data showed distinct CD4+ T helper (Th) polarization and cytokine dysregulation in response to F. gigantica infection in water buffaloes over the course of infection. Characterizing the temporal expression profiles for host immune genes during infection should provide important information for defining how F. gigantica adapts and survives in the liver of buffaloes and how host immune responses influence F. gigantica pathogenicity
Lithium titanate hydrates with superfast and stable cycling in lithium ion batteries
Lithium titanate and titanium dioxide are two best-known high-performance electrodes that can cycle around 10,000 times in aprotic lithium ion electrolytes. Here we show there exists more lithium titanate hydrates with superfast and stable cycling. That is, water promotes structural diversity and nanostructuring of compounds, but does not necessarily degrade electrochemical cycling stability or performance in aprotic electrolytes. As a lithium ion battery anode, our multi-phase lithium titanate hydrates show a specific capacity of about 130 mA h g⁻¹ at ∼35 C (fully charged within ∼100 s) and sustain more than 10,000 cycles with capacity fade of only 0.001% per cycle. In situ synchrotron diffraction reveals no 2-phase transformations, but a single solid-solution behavior during battery cycling. So instead of just a nanostructured intermediate to be calcined, lithium titanate hydrates can be the desirable final destination.United States. Department of Energy (Contract DE-AC0206CH11357
- …
