1,024 research outputs found

    Microsatellite and mitochondrial DNA analysis of the genetic structure of Chinese horseshoe crab (Tachypleus tridentatus) in southeast China coast

    Get PDF
    Chinese horseshoe crab (Tachypleus tridentatus) is a Xiphosura animal of significant commercial importance and in danger of extinction in China. To better estimate how genetic structure can be used to obtain a conservation perspective of the species, genetic variation was examined in nine locations covering its distributing range in the coast of Chinese mainland using ten nuclear microsatellite DNA loci and mitochondrial DNA control region (CR) sequences. Moderate levels of genetic diversity were detected (expected heterozygosity from microsatellites was 0.635, haplotype diversity from mitochondrial DNA was 0.800) as a whole. Significant genetic differentiation was detected only by mitochondrial DNA (FST = 0.0693, P < 0.01), while microsatellite markers indicated nuclear genetic homogeneity of these locations. Probably, nuclear genetic homogeneity was caused by outbreeding among different groups due to artificial transporting. Very weak genetic differentiation indicates that reintroduction programs of the movement and mixing of horseshoe crab from different locations will result in minimal negative genetic effects. Upon four management units were inferred from the results of CR analysis, accordingly four or more nature reserves should be established to conserve this endangered animal along the Chinese coast. Haplotype network pattern indicated that T. tridentatus population in Chinese coast has undergone historic population expansion and very recent historic population recession. Mismatch distributions analysis also revealed existence of historic demographic expansion.Keywords: Tachypleus tridentatus, microsatellites, mitochondrial DNA, population structure, genetic diversityAfrican Journal of Biotechnology Vol. 12(16), pp. 2088-209

    TBG V: Exact Analytic Many-Body Excitations In Twisted Bilayer Graphene Coulomb Hamiltonians: Charge Gap, Goldstone Modes and Absence of Cooper Pairing

    Full text link
    We find exact analytic expressions for the energies and wavefunctions of the charged and neutral excitations above the exact ground states (at rational filling per unit cell) of projected Coulomb Hamiltonians in twisted bilayer graphene. Our exact expressions are valid for any form of the Coulomb interaction and any form of AAAA and AB/BAAB/BA tunneling. The single charge excitation energy is a convolution of the Coulomb potential with a quantum geometric tensor of the TBG bands. The neutral excitations are (high-symmetry group) magnons, and their dispersion is analytically calculated in terms of the form factors of the active bands in TBG. The two-charge excitation energy and wavefunctions are also obtained, and a sufficient condition on the graphene eigenstates for obtaining a Cooper-pair from Coulomb interactions is obtained. For the actual TBG bands at the first magic angle, we can analytically show that the Cooper pair binding energy is zero in all such projected Coulomb models, implying that either phonons and/or non-zero kinetic energy are needed for superconductivity. Since the [Phys. Rev. Lett. 122, 246401] showed that the kinetic energy bounds on the superexchange energy are less 10310^{-3} in Coulomb units, the phonon mechanism becomes then very likely. If nonetheless the superconductivity is due to kinetic terms which render the bands non-flat, one prediction of our theory is that the highest TcT_c would not occur at the highest DOS.Comment: references adde

    TBG VI: An Exact Diagonalization Study of Twisted Bilayer Graphene at Non-Zero Integer Fillings

    Full text link
    Using exact diagonalization, we study the projected Hamiltonian with Coulomb interaction in the 8 flat bands of first magic angle twisted bilayer graphene. Employing the U(4) (U(4)×\timesU(4)) symmetries in the nonchiral (chiral) flat band limit, we reduced the Hilbert space to an extent which allows for study around ν=±3,±2,±1\nu=\pm 3,\pm2,\pm1 fillings. In the first chiral limit w0/w1=0w_0/w_1=0 where w0w_0 (w1w_1) is the AAAA (ABAB) stacking hopping, we find that the ground-states at these fillings are extremely well-described by Slater determinants in a so-called Chern basis, and the exactly solvable charge ±1\pm1 excitations found in [arXiv:2009.14200] are the lowest charge excitations up to system sizes 8×88\times8 (for restricted Hilbert space) in the chiral-flat limit. We also find that the Flat Metric Condition (FMC) used in [arXiv:2009.11301,2009.11872,2009.12376,2009.13530,2009.14200] for obtaining a series of exact ground-states and excitations holds in a large parameter space. For ν=3\nu=-3, the ground state is the spin and valley polarized Chern insulator with νC=±1\nu_C=\pm1 at w0/w10.9w_0/w_1\lesssim0.9 (0.3) with (without) FMC. At ν=2\nu=-2, we can only numerically access the valley polarized sector, and we find a spin ferromagnetic phase when w0/w10.5tw_0/w_1\gtrsim0.5t where t[0,1]t\in[0,1] is the factor of rescaling of the actual TBG bandwidth, and a spin singlet phase otherwise, confirming the perturbative calculation [arXiv:2009.13530]. The analytic FMC ground state is, however, predicted in the intervalley coherent sector which we cannot access [arXiv:2009.13530]. For ν=3\nu=-3 with/without FMC, when w0/w1w_0/w_1 is large, the finite-size gap Δ\Delta to the neutral excitations vanishes, leading to phase transitions. Further analysis of the ground state momentum sectors at ν=3\nu=-3 suggests a competition among (nematic) metal, momentum MMM_M (π\pi) stripe and KMK_M-CDW orders at large w0/w1w_0/w_1.Comment: 21+23 pages, 13+15 figure

    Enchanced levels of apolipoprotein M during HBV infection feedback suppresses HBV replication

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Chronic liver diseases can interfere with hepatic metabolism of lipoproteins, apolipoproteins. Hepatitis B virus (HBV) is a major etiological agent causing acute and chronic liver diseases. Apolipoprotein M (ApoM) is a high-density lipoprotein (HDL) apolipoprotein and exclusively expressed in the liver parenchyma cells and in the tubular cells of the kidney. This study was to determine the correlation between HBV infection and ApoM expression.</p> <p>Materials and methods</p> <p>Serum ApoM levels in patients with HBV infection and in healthy individuals were measured by ELISA, ApoM mRNA expression were determined by RT-PCR, and the expression of S and E proteins of HBV, as well as the synthesis of viral DNA were measured by ELISA and real-time PCR.</p> <p>Results</p> <p>The levels of serum ApoM was significantly elevated in patients as compared to healthy individuals (<it>P </it>< 0.001), ApoM promoter activity, mRNA and protein expression were all stimulated in cells transfected with infectious HBV clone. In addition, ApoM decreases the expression of S and E proteins of HBV and the synthesis of viral DNA.</p> <p>Conclusion</p> <p>Raised ApoM levels in HBV infection may in turn suppress HBV replication, one of the protective mechanisms of nature.</p

    2,3:6,7-Bis(methyl­enedi­oxy)­phenanthrene

    Get PDF
    In the title mol­ecule, C16H10O4, all the non-H atoms are coplanar. The crystal structure is stabilized by weak inter­molecular C—H⋯O contacts and π–π stacking inter­actions (the inter­planar distance is 3.43 Å)

    1-[Bicyclo[4.2.0]octa-1(6),2,4-trien-3-yl]-3-[bicyclo[4.2.0]octa-1(6),2,4-trien-3-yl­methyl]imidazolium hexa­fluoro­phos­phate

    Get PDF
    In the title compound, C20H19N2 +·PF6 −, the two benzocyclo­butene units are essentially planar and they form dihedral angles of 38.0 (2) and 72.7 (2)°, with the central imidazolium ring. In the crystal structure, weak C—H⋯π and π-–π stacking inter­actions [centroid–centroid distance = 3.742 (2) Å] contribute to the stability of the crystal structure. The PF6 − ion is disordered over two positions with site occupancies of 0.869 (9) and 0.131 (9)

    Bloch surface plasmon enhanced blue emission from InGaN/GaN light-emitting diode structures with Al-coated GaN nanorods

    No full text
    InGaN/GaN light-emitting diode structures with Al-coated GaN nanorods were fabricated by using soft ultraviolet nanoimprint lithography. The intensity of light emission was found to be greatly enhanced due to the strong near-fields confined at the interface of Al/GaN and extended to the multiple quantum wells (MQWs) active region. The dynamics of carrier recombination and plasmon-enhanced Raman scattering were also investigated, providing a progressive view on the effective energy transfer between MQWs and surface plasmons.This work was supported by Special Funds for Major State Basic Research Project (Nos. 2011CB301900 and 2012CB619304), the Hi-tech Research Project (No. 2014AA032605), National Nature Science Foundation of China (Nos. 11104130, 61274003, 60990311, 61176063, and 61422401), the Program for New Century Excellent Talents in University (No. NCET-11-0229), Nature Science Foundation of Jiangsu Province (Nos. BK2011556, BK2011010, BK2010385, BY2013077, and BE2011132), Funds of Key Laboratory (No. 9140C140102120C14), Scientific Innovation Research of College Graduate in Jiangsu Province (CXZZ12_0052), PAPD, the Fundamental Research Funds for the Central Universities, the Research Funds from NJUYangzhou Institute of Opto-electronics, and the Australian Research Council Discovery Early Career Researcher Award (DE130101700)

    Superconductivity induced by oxygen deficiency in Sr-doped LaOFeAs

    Full text link
    We synthesized Sr-doped La0.85Sr0.15OFeAsLa_{0.85}Sr_{0.15}OFeAs sample with single phase, and systematically studied the effect of oxygen deficiency in the Sr-doped LaOFeAs system. It is found that substitution of Sr for La indeed induces the hole carrier evidenced by positive thermoelectric power (TEP), but no bulk superconductivity is observed. The superconductivity can be realized by annealing the as-grown sample in vacuum to produce the oxygen deficiency. With increasing the oxygen deficiency, the superconducting transition temperature (TcT_c) increases and maximum TcT_c reaches about 26 K the same as that in La(O,F)FeAs. TEP dramatically changes from positive to negative in the nonsuperconducting as-grown sample to the superconducting samples with oxygen deficiency. While RHR_H is always negative for all samples (even for Sr-doped as grown sample). It suggests that the La0.85Sr0.15O1δFeAsLa_{0.85}Sr_{0.15}O_{1-\delta}FeAs is still electron-type superconductor.Comment: 4 pages, 4 figure
    corecore