1,242 research outputs found

    Analysis of the strong vertices of ΣcND\Sigma_cND^{*} and ΣbNB\Sigma_bNB^{*} in QCD sum rules

    Full text link
    The strong coupling constant is an important parameter which can help us to understand the strong decay behaviors of baryons. In our previous work, we have analyzed strong vertices ΣcND\Sigma_{c}^{*}ND, ΣbNB\Sigma_{b}^{*}NB, ΣcND\Sigma_{c}ND, ΣbNB\Sigma_{b}NB in QCD sum rules. Following these work, we further analyze the strong vertices ΣcND\Sigma_{c}ND^{*} and ΣbNB\Sigma_{b}NB^{*} using the three-point QCD sum rules under Dirac structures q ⁣ ⁣ ⁣/p ⁣ ⁣ ⁣/γαq\!\!\!/p\!\!\!/\gamma_{\alpha} and q ⁣ ⁣ ⁣/p ⁣ ⁣ ⁣/pαq\!\!\!/p\!\!\!/p_{\alpha}. In this work, we first calculate strong form factors considering contributions of the perturbative part and the condensate terms qq\langle\overline{q}q\rangle, αsπGG\langle\frac{\alpha_{s}}{\pi}GG\rangle and qgsσGq\langle\overline{q}g_{s}\sigma Gq\rangle. Then, these form factors are used to fit into analytical functions. According to these functions, we finally determine the values of the strong coupling constants for these two vertices ΣcND\Sigma_{c}ND^{*} and ΣbNB\Sigma_{b}NB^{*}.Comment: arXiv admin note: text overlap with arXiv:1705.0322

    Quantum Computation with Graphene Nanostructure

    Get PDF

    Zc(3900)Z_c(3900) as a DDˉD\bar{D}^* molecule from the pole counting rule

    Full text link
    A comprehensive study on the nature of the Zc(3900)Z_c(3900) resonant structure is carried out in this work. By constructing the pertinent effective Lagrangians and considering the important final-state-interaction effects, we first give a unified description to all the relevant experimental data available, including the J/ψπJ/\psi\pi and ππ\pi\pi invariant mass distributions from the e+eJ/ψππe^+e^-\to J/\psi\pi\pi process, the hcπh_c\pi distribution from e+ehcππe^+e^-\to h_c\pi\pi and also the DDˉD\bar D^{*} spectrum in the e+eDDˉπe^+e^-\to D\bar D^{*}\pi process. After fitting the unknown parameters to the previous data, we search the pole in the complex energy plane and find only one pole in the nearby energy region in different Riemann sheets. Therefore we conclude that Zc(3900)Z_c(3900) is of DDˉD\bar D^* molecular nature, according to the pole counting rule method~[Nucl.~Phys.~A543, 632 (1992); Phys.~Rev.~D 35,~1633 (1987)]. We emphasize that the conclusion based upon the pole counting method is not trivial, since both the DDˉD\bar D^{*} contact interactions and the explicit ZcZ_c exchanges are introduced in our analyses and they lead to the same conclusion.Comment: 21 pages, 9 figures. To match the published version in PRD. Additional discussion on the spectral density function is include

    Tuberostemoamide hemihydrate

    Get PDF
    In the crystal structure of the title compound {systematic name: (1′S,2R,2′R,3′S,6′R)-3′-ethyl-4-methyl-5H-5′-oxa-10′-aza­spiro­[furan-2,4′-tricyclo­[8.3.0.02,6]trideca­ne]-5,11′-dione hemihydrate}, C17H23NO4·0.5H2O, the asymmetric unit contains two mol­ecules of tuberostemoamide with similar conformations and one water mol­ecule. The tuberostemoamide mol­ecule is composed of one seven-membered ring (A) and three five-membered rings (B, C and D). Ring A exists in a chair conformation, both rings B and C exist in envelope conformations, and ring D is almost planar with a mean deviation of 0.0143 (4) Å in one molecule and 0.0095 (3) Å in the other.. The dihedral angles between the planes of rings C and D are 75.1 (3)° in one mol­ecule and 74.5 (3)° for the other. The solvent water mol­ecule links the tuberostemoamide mol­ecules through O—H⋯O(ketone) hydrogen bonds. Weak C—H⋯O inter­actions are also present, involving both the water mol­ecule and a heterocyclic ether O-atom acceptor
    corecore