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1. Introduction

Quantum computers which can efficiently simulate complex quantum systems and solve
certain classes of hard mathematical problems are of great interest and importance. However,
practical implementation of a large-scale quantum computer represents a formidable
challenge. One significant obstacle is combining good access to the quantum system with
high degree isolation from the environment in a scalable system.
The spin qubit proposal is a promising approach to address the central issues (Loss et al.,
1998). The electron spin is a two-level system which is a natural candidate for realization
of a quantum bit. Spin qubits in semiconductor nanostructures can be accessed and scaled
easily. After the original spin-qubit proposal, there has been enormous research effort in
implementing the spin-based information processing and the major breakthroughs in basic
proof-of-principle experiments have been achieved in GaAs/AlGaAs quantum dots. First, the
single-shot measurement of an individual electron spin has been realized (Elzerman et al.,

2004). Second, the demonstrations of the
√

SWAP-gate on two-electron spin states (Petta et al.,
2005) and single spin rotations (Koppens et al., 2006; Nowack et al., 2007; Pioro-Ladrière et al.,
2008) suffice to universal quantum operations of spin qubits. By now all parts of the original
Loss-DiVincenzo proposal have been demonstrated in the proof-of-principle experiments. To
build a scalable quantum computer requires that the gate error should be smaller than the
threshold and the decoherence time should be 104 times longer than the operation time.
However because of interaction with the nuclei environment in the host GaAs/AlGaAs
material via both lattice-mediated spin-orbit interactions and hyperfine interactions, the
decoherence times are not long enough compared to the single qubit operations. Because
of the completely eliminated hyperfine interactions in graphene, there is great potential
for electron spin qubits in a nuclear-spin-free quantum world (Trauzettel et al., 2007). It is
highly desirable to propose an efficient architecture made with graphene nanostructures to
implement the quantum information processing (QIP) (Pedersen et al., 2008).
Owing to the special band structure of graphene (Castro Neto et al., 2009), its low-energy
quasi-particles behave as Dirac fermions, and the Klein tunneling and Chiral effect make it
non-trivial to form well controllable quantum dots in graphene. There are several ways in
which one could localize electrons (holes) in graphene; by using suitable transverse states
in Graphene nanoribbon (GNR) (Trauzettel et al., 2007; Silvestrov et al., 2007), by electrical
confinement in bilayer graphene (Peeters et al., 2007), or by using the topological structure
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(Wang et al., 2007). In the chapter, we propose two alternative approaches that the localized
states can exist in the zigzag region of a GNR with a sequence of Z-shaped structures (Guo
et al., 2009) or substrate modulated graphene quantum dot (Ma et al., 2009). The localized
electron (hole) spin states can be used, as the physical qubit. For the GNR quantum dot chain,
the interaction between qubits is found to be of the always-on Heisenberg form. Moreover,
for a practical quantum computer to operate, it is essential to properly tailor the disturbing
environment. An important technique for doing this is the use of quantum bang-bang (BB)
control strategy and the decoherence-free subspaces (DFS) encoding method, both of which
are traditionally discussed in the context of atomic, molecular and optical setup (Morton et
al., 2006; Kwiat et al., 2000; Kielpinski et al., 2001; Viola et al., 2001; Zhang et al., 2004). In this
chapter, these ideas will be introduced to construct an effective quantum information circuit
in new graphene nanostructure below.

2. Electron localization in graphene quantum dots

2.1 Quantum dots on a graphene nanoribbon

It is difficult to form a conventional-type quantum dot inside an infinite graphene because
of Klein tunneling which wound induce charge transmission through the interface of p-n
junctions. Trauzettel, Bulaev, Loss and Burkard firstly introduced a method to overcome such
difficulties and form spin qubits in quantum dots based on GNR with armchair boundaries
in 2007 (Trauzettel et al., 2007). For the semiconducting armchair boundary conditions, both
sublattices of graphene’s hexagonal structure will be terminated equally on both side which
result in the emergence of a gap and destruction of the valley degeneracy. The charge carriers
can be confined on the quantum dot regions between two barrier regions in which electric
potential can be tuning by applying a appropriate local gate voltage. Since all the bound
states are non-degenerate in valley space, the spin qubits are proposed in this graphene
nanostructure. The two spin qubits are coupled via an exchange coupling and the exchange
coupling is controlled by the tunnel barrier between the dots. In combination with single
spin operations, universal quantum gates can be achieved. The interest idea of the proposal
is non-local electron spins in any two of dots can be coupled with the others being decoupled
by detuning. Therefore long-distance quantum gates in graphene quantum dots are feasible.

2.2 Substrate modulated graphene quantum dot

In this section, we concentrate on a new method to use gapped graphene as barrier to confine
electrons in gapless graphene and form a good quantum dot, which can be realized on an
oxygen-terminated SiO2 substrate partly H-passivated. Further, this method can be upgraded
to form two-dimensional quantum dot arrays. We systematically investigate two-dimensional
system and find that the coupling strength between neighboring dots can be uniquely
anisotropic. The ability to achieve more complex and scalable pattern in our proposal suffice
to design a large-scale quantum computer in principle.
Recently, it was discussed that the electronic energy spectrum of the monolayer graphene
depended strongly on the surface characteristic of the substrate (Zhou et al., 2007; Shemella
et al., 2009). For example, if a single layer graphene is deposited onto a SiO2 surface, a
finite energy gap will open between conduction and valence bands for an oxygen-terminated
surface, but close when the oxygen atoms on the substrate are passivated with hydrogen
atoms. The confinement can be achieved by a gapless nanoscale graphene regions connecting
with gapped regions, which serve as barriers, as shown in Fig 1. The devices are realizable
in experiment. In an oxygen terminated SiO2 substrate, we use protective stuff to cover the
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Fig. 1. (a) Schematic of a single quantum dot. A GNR is deposited on a SiO2 substrate. The
dark part is the dot region, which is fully hydrogen-passivated and gapless. The light part is
the barrier region, which is non hydrogen-passivated or slightly hydrogen-passivated and
gapped. (b) Energy bands of this system.

barrier regions and the dot region is fully exposed to hydrogen atoms atmosphere. Then
a single layer graphene is deposited on this substrate and the bound states exit in the
hydrogen-passivated regions. Compared to the approach of forming quantum dots on GNR
with semiconducting armchair boundary conditions (Trauzettel et al., 2007), the realization
of quantum dot will not depend much on the boundary conditions. Since ferromagnetic
insulators deposited on graphene can induce ferromagnetic correlations in graphene, we
consider adding ferromagnetic insulator such as EuO upon the two gapped graphene barriers.
The induced exchange interaction is estimated to achieve 5 meV by using EuO (Haugen et al.,
2008).
The electron waves in graphene system are usually described by four component spinor

envelop wavefunction Ψ = (ψ
(K)
A , ψ

(K)
B ,−ψ

(K
′
)

A ,−ψ
(K

′
)

B ). The behaviors of low energy electron
can be described by 4 × 4 Dirac equation for massless or massive particles, which can be
written as (Recher et al., 2009): in the dot region (where 0 ≤ y ≤ L),

− ih̄vF

(

σx∂x + σy∂y 0
0 −σx∂x + σy∂y

)

Ψ = EΨ, (1)

and in the barrier region (where y < 0 or y > L),

− ih̄vF

(

σx∂x + σy∂y 0
0 −σx∂x + σy∂y

)

Ψ + ∆

(

σz 0
0 σz

)

Ψ − ηVσΨ = EΨ, (2)

where h̄ is the Planck constant, vF ≈ 106 m/s is the Fermi velocity, σx, σy, σz are Pauli matrices
acting on two-spinor states related to the two triangular sublattices of graphene, η = ±1
stands for the two spin indexes (spin up and spin down). 2∆ is the gap induced by the
substrate, 2Vσ is the spin splitting energy due to the correlation with ferromagnetic contacts.
We consider metallic armchair shaped GNR with the quantized transverse momentum qn =
n π

W and the wave vectors in the y direction should satisfy different conditions as

E = ±
√

(h̄vFqn)2 + (h̄vFk)2, (3)
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in the dot and

E = ±
√

(h̄vFqn)2 + (h̄vFk′)2 + ∆2 − ηVσ, (4)

in the barriers, where k is the wave vector in the dot and k
′

in the ferromagnetic barrier with
± signs referring to conduction band (+) and valence band (−) respectively. The bound state

requires that k
′

is a pure imaginary, which means the bound state energy should satisfy

|E| � h̄vF |qn|, |E + ηVσ| <

√

(h̄vFqn)2 + ∆2. (5)

The energy levels of the bound states can be obtained by matching the wavefunctions at y = 0
and y = L. We use 1/L as the unit of qn and the characteristic energy h̄vF/L as the energy
unit. In Fig. 2, we show the energy spectrum as a function of the substrate induced interaction
∆ for different transverse momentums (qn) where Vσ is assumed to be 5 meV (Haugen et al.,
2008). As shown in Fig. 2, when ∆ increases, the number of bound states is increasing at the
same time, which can be deduced from Eq. 5.
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Fig. 2. Bound-state energy levels of a substrate modulated graphene quantum dot with
Vσ = 5meV for qn = 0, 1, 2, 3 and η = 1, black: qn = 0, green: qn = 1, blue: qn = 2, red: qn = 3.
Both axe labels are in the characteristic energy unit of h̄vF/L. The length L and width W of
dot are assumed to be 100 nm and 300 nm respectively.

Our approach can be easily developed to more complex and scalable pattern. Here we study a
two-dimensional quantum dot array as shown in Fig. 3a. Instead of forming transverse modes
of nanoribbon, the wavefunctions must match between dot and barrier along both x and y
directions. The energy spectrum of this system has been plotted in Fig. 3b. The neighboring
dots are coupled by the exchange coupling J. We obtain J by calculating the exchange coupling
J = 4t2/U according to Hubbard approximation. Here U is onsite Coulomb energy and
t = ε

∫

ϕ†
1(�r1)ϕ2(�r2) is tunnelling matrix element between two neighboring quantum dots,

where ε is the single-particle bound state energy and ϕ1(�r) and ϕ2(�r) are the wavefunctions
of two neighboring or next-nearest neighboring dots. We estimate U ≈ 10 meV for the dot
size L ≈ 30 nm and the characteristic energy unit of this system h̄vF/L is about 22 meV. Fig.
4 shows the nearest coupling strength (J1) and the next-nearest coupling strength (J2) of the
ground state versus the opened gap ∆ in the barrier region (when d = 3L), from which we
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Fig. 3. (a) Schematic drawing of two-dimensional quantum dot arrays. The dot regions (dark
regions) are defined by the gapped barrier regions (light regions). (b) The bound-state energy
levels of this two-dimensional system with L = 30 nm and d = 3L. Both axe labels are in the
characteristic energy unit of h̄vF/L.

find that the nearest coupling strength decreases sharply when the opened gap increases. We
also find that the nearest coupling both along the x direction and y direction are the same for
the ground state, and coupling strengths between the nearest and next-nearest neighboring
dots are anisotropic for excited states.

Fig. 4. Coupling strength of the nearest (J1) and next-nearest (J2) dots as a function of the
opened gap ∆ in the barrier region for the ground state.

2.3 Graphene nanoribbon quantum dot chain

In this section, we introduce a graphene quantum system in which the proposed GNR consists
of an array of Z-shaped structures and each Z-shaped structure includes a central region
with zigzag edge connecting to two regions with armchair edge, as presented in Fig. 5d.
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Using the π orbital tight-binding(TB) approximation, the density of states and the spectrum
of the zigzag region in this GNR system can be obtained by the direct diagonalization with
periodic boundary conditions. We find that there are several localized states with electron-hole
symmetry around the zero energy point, as shown in Fig.5a. Considering higher-order
hopping terms, we calculated the DOS and the spectrum using a third nearest-neighbor TB
model instead of nearest-neighbor TB model with the second and third neighbor interaction
energies γ1 = −0.12eV and γ2 = −0.068eV (Reich et al., 2002; Son et al., 2006). As shown in
Fig. 5a and Fig. 6, higher-order hopping terms destroy the electron-hole symmetry, but don’t
destroy the confined states in each zigzag region. Hence we can choose to get one localized
electron or hole in the zigzag region by adjusting the Fermi level through the individual top
gates. Furthermore, in the calculations we find that the spectrum of GNR depends very much
on the nature of their geometry. There are no localized states in the zigzag regions when the
width of this GNR N = 3m − 1 or N = 2m (unit cells), as shown in Fig. 6. Here m is an integer.
We now discuss two coupled Z-shaped quantum dots, which are connected with armchair
GNR. Fig. 5b shows the spatial distribution of local probability density of a typical GNR with
two Z-shaped structures, and N = 7, L = 4, D = 6 for E0 = ±0.3 eV discrete states. As shown
in Fig. 5c, each zigzag region (quantum dot) confines one electron and these two electrons
are coupled by the exchange interaction J1. J1 can be obtained by calculating the exchange
interaction J1 = 4t2/U. Obviously, the exchange coupling J1 is determined by the geometry
of the nanoribbon. For each N and L, J1 depends on the distance between two neighboring
dots D (unit cells), as shown in Fig. 7.
The spin of the localized charge carrier is used as the physical qubit and the GNR with a
sequence of Z-shaped structures forms an one-dimensional spin qubit chain as shown in
Fig. 5d. In this chapter, we neglect the magnetic effect of GNR edge (Son et al., 2009). The

neighboring qubits in this chain have an always-on Heisenberg interaction H = J1
�S1 · �S2. Here

�S1 and �S2 are the spin operators of the neighboring localized charge carrier. For a sequence of
Z-shaped structure GNR with parameters as N = 7, L = 4, D = 18, the Hamiltonian of the
system can be expressed as

HI = ∑
〈i,j〉

Ji,j(σx
i ⊗ σx

j + σ
y
i ⊗ σ

y
j + σz

i ⊗ σz
j ), (6)

where σ
x,y,z
i,j are the spin Pauli operators of the localized charge carrier in the quantum dots,

〈i, j〉 represent two nearest neighboring dots.

3. Quantum-noise control in graphene nanoribbon quantum dot chain

The main challenges for solid-state QIP are achieving the high accuracy of gate operation
and tailoring the disturbing environment. In our one-dimensional spin qubit chain, the
quantum information is disturbed by the charge noise, the nuclear spins in substrate and
inherent spin-spin interaction. Therefore achieving noise control is indispensable. A variety
of strategies have been devised to meet this challenge, no single method can suppress the
complex noise and decoherence. Rather, constructing a reliable QIP scheme depends crucially
on the errors that happen. First, to avoid the spin qubits to entangle with the environment,
we can apply a BB operation Uz = exp(−iσzπ/2) to each quantum dot region. Such rotation
operations can be implemented through the electrically driven single-electron spin resonance
by localized a.c. electric field pulses if ferromagnetic strips are integrated on top of the
graphene quantum dots, which has been successfully realized in GaAs/AlGaAs quantum dot
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Fig. 5. Schematic illustration of the proposed architecture of GNR quantum dot chain. (a) The
density of states of the GNR are calculated by nearest neighbor TB approximation and third
nearest-neighbor TB approximation with the second and third neighbor interaction energies
γ1 = −0.12eV and γ2 = −0.068eV. (b) The spatial distribution of local probability density of
GNR with two coupled quantum dots, and N = 7, L = 4, D = 6 for ground states. (c) Two
coupled graphene quantum dots in which each dot is filled with a single electron. The
physical qubit is encoded into the spin of the confined electron. (d) The proposed periodic
architecture with three logical qubits as a unit for quantum computation. Physical qubits 1
and 2 form logical qubit L1; physical qubits 3 and 4 form logical qubit L2; physical qubits 5
and 6 form logical qubit L3. The Gz , Gx, Gy are the BB operation sets of L1, L2 and L3

respectively. The cyan ribbon indicates the micromagnet integrated on top of the GNR
structure to apply an slanting magnetic field. The GNR and micromagnet are isolated by an
insulating layer. Each zigzag region has a nearby gate. The nearby gates are not outlined for
clarity.
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experiment recently (Pioro-Ladrière et al., 2008). Next, to counteract the phase decoherence,
we can use DFS encoding (Duan et al., 1997; Lidar et al., 1998; Benjamin et al., 2003). For a
simply DFS encoding, two physical qubits can encode a logical qubit:

|0〉L = | ↑1↓2〉, |1〉L = | ↓1↑2〉. (7)

As shown in Fig. 5c, localized electron spins in the two neighboring zigzag regions can be
used to form a logical qubit.
Furthermore, a special encoding method and a nonsynchronous BB pulse operations are
exploited to overcome the untunable spin-spin interactions between two neighboring physical
qubits (Zhang et al., 2004). We proposed a GNR quantum dot chain architecture, which forms
a periodic structure L1L2L3L1L2L3 · · · with three logical qubits as a unit, as shown in Fig. 5d.
L1 represents a logical qubit encoded as Eq. (7). L2 is a logical qubit encoded as

|0〉L2 =
1

2
(| ↑〉3 + | ↓〉3)(| ↑〉4 − | ↓〉4), (8)

|1〉L2 =
1

2
(| ↑〉3 − | ↓〉3)(| ↑〉4 + | ↓〉4). (9)

And L3 is a logical qubit encoded as

|0〉L3 =
1

2
(| ↑〉5 + i| ↓〉5)(| ↑〉6 − i| ↓〉6), (10)

|1〉L3 =
1

2
(| ↑〉5 − i| ↓〉5)(| ↑〉6 + i| ↓〉6). (11)

With this periodic architecture, we need to apply nonsynchronous BB pulse operations
respectively to L1, L2, L3 from the operation sets Gz = {I, Uz, Rz}, Gx = {I, Ux, Rx},
Gy = {I, Uy, Ry}, where Uz = −σz

1 ⊗ σz
2 , Rz = −i Iz

1 ⊗ σz
2 , Ux = −σx

1 ⊗ σx
2 , Rx = −i I1 ⊗ σx

2 ,

Uy = −σ
y
1 ⊗ σ

y
2 , and Ry = −i I1 ⊗ σ

y
2 . Thus we obtain a quantum computation system with

entirely decoupled logical qubits.

4. Universal quantum gates in GNR quantum dot chain

In this section, we discuss the scheme to perform universal set of quantum gates on encoded
qubits. Since arbitrary single-qubit rotations can be constructed from the two elementary logic
operations X̄ and Z̄, we show how to implement the two gate operations in the GNR quantum
dot chain. For logical qubit L1, X̄ = 1

2 (σx
1 ⊗ σx

2 + σ
y
1 ⊗ σ

y
2 ), Z̄ = 1

2 (σz
1 − σz

2). X̄ gate can be easily
achieved by adjusting the BB pulses of both qubits 1 and 2 to be synchronous. The operation
time is ∆t = h̄π/4J = 0.2 ns, for N = 7, L = 4, D = 18. Z̄ gate can be achieved by localized
pluses on the two physical qubits respectively. The operation time of Z̄ gate can be nanosecond
scale when a slanting magnetic field with large field gradient is applied onto each quantum
dot region (Pioro-Ladrière et al., 2008). The fidelity of the X̄ gate is limited by fluctuations in
the qubit splitting J caused by charge noise, such as 1/ f noise. The accuracy of the Z̄ gate is
dominated by spin dephasing due to the nuclear field fluctuations. The fidelity of the Z̄ gate
can be very high due to the small nuclear field in graphene system.
Combined with the arbitrary single-qubit rotation, two-qubit CNOT gate on any two logical
qubits is required to complete our universal set of quantum gates. For example, we construct
CNOT gate between two neighboring logical qubits, L1 and L2. It is shown that CNOT gate

can be implemented by W gate W = eiθZ̄⊗Z̄ conjugating Hadamard operation. It has been
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known that W gate is equivalent to a controlled rotation about the z axis: W = eiθZ̄⊗Z̄ =

|0〉〈0| ⊗ I + |1〉〈1| ⊗ e2iθZ̄ (Bremner et al., 2002). By performing Hadamard transformation to
the two physical qubits of the second logical qubit L2 and changing the BB control pulse to be
the same with L1, we can recouple the two neighboring logical qubits and implement W gate
of logical qubits of L1 and L2.
The spin decoherence time of graphene quantum dot has been predicted to be more than 10
µs in the nature carbon material (Trauzettel et al., 2007; Fischer et al., 2009). This decoherence
time is 4 orders longer than the gate operation time of the present scheme and the gate error
might meet the required threshold in principle. This combined DFS and BB control method is
a useful approach to offer the possibility for coherent controlling spin qubits on graphene.

5. Conclusion

To conclude, we have discussed the potential to implement spin-based quantum computation
on graphene nanostructures. Several approaches have been introduced to achieved quantum
confinement of charge carriers. To overcome the dependence on the boundary conditions of
GNR, we proposed a method to form quantum dots in substrate modulated graphene. We
presented the theoretical proposals for forming logical qubit encoding in a DFS subspace and
achieving noise control by BB control strategy in a GNR quantum dot chain with always-on
Heisenberg interaction. Furthermore, universal set of quantum gates on encoded qubits has
been achieved by a sequence of pulse control. Recently, the experimental breakthroughs in
few electrons or holes graphene quantum dots (Neubeck et al., 2010) open an avenue for
realization of spin qubit in graphene nanostructure.
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