22 research outputs found

    Self-Template Synthesis of Co–Se–S–O Hierarchical Nanotubes as Efficient Electrocatalysts for Oxygen Evolution under Alkaline and Neutral Conditions

    No full text
    We develop a facile self-template synthetic method to construct hierarchical Co–Se–S–O (CoSe<sub><i>x</i></sub>S<sub>2–<i>x</i></sub>@Co­(OH)<sub>2</sub>) nanotubes on a carbon cloth as a self-standing electrode for electrocatalytic oxygen evolution reaction (OER). In the synthetic process, separate selenization and sulfurization on the Co­(OH)F precursor in different solvents have played an important role in constructing CoSe<sub><i>x</i></sub>S<sub>2–<i>x</i></sub> (Co–Se–S) hierarchical nanotubes, which was further transformed into the nanotube-like Co–Se–S–O via an in situ electrochemical oxidation process. The Co–Se–S–O obtained by the Kirkendall effect through two stepwise anion-exchange reactions represents the first quaternary Co–Se–S–O nanotube array, which dramatically enhances its surface area and conductivity. Further, it only requires low overpotentials of 230 and 480 mV to achieve a 10 mA cm<sup>–2</sup> current density. The OER performance of Co–Se–S–O is much more efficient than that of its monochalcogenide counterparts, as well as the commercial benchmark catalyst IrO<sub>2</sub>

    Photosensitizing Metal–Organic Framework Enabling Visible-Light-Driven Proton Reduction by a Wells–Dawson-Type Polyoxometalate

    No full text
    A simple and effective charge-assisted self-assembly process was developed to encapsulate a noble-metal-free polyoxometalate (POM) inside a porous and phosphorescent metal–organic framework (MOF) built from [Ru­(bpy)<sub>3</sub>]<sup>2+</sup>-derived dicarboxylate ligands and Zr<sub>6</sub>(μ<sub>3</sub>-O)<sub>4</sub>(μ<sub>3</sub>-OH)<sub>4</sub> secondary building units. Hierarchical organization of photosensitizing and catalytic proton reduction components in such a POM@MOF assembly enables fast multielectron injection from the photoactive framework to the encapsulated redox-active POMs upon photoexcitation, leading to efficient visible-light-driven hydrogen production. Such a modular and tunable synthetic strategy should be applicable to the design of other multifunctional MOF materials with potential in many applications

    Four Polyoxonibate-Based Inorganic–Organic Hybrids Assembly from Bicapped Heteropolyoxonibate with Effective Antitumor Activity

    No full text
    Four novel heteropolyoxonibate-based inorganic–organic hybrids {Cu­(en)<sub>2</sub>}<sub>6</sub>{GeNb<sub>12</sub>V<sup>IV</sup><sub>2</sub>O<sub>42</sub>}·20H<sub>2</sub>O (<b>1</b>), {Cu­(en)<sub>2</sub>}<sub>3</sub>K<sub>2</sub>Na<sub>4</sub>{GeNb<sub>12</sub>V<sup>IV</sup><sub>2</sub>O<sub>42</sub>}·23H<sub>2</sub>O (<b>2</b>), {Cu­(en)<sub>2</sub>}<sub>6</sub>{SiNb<sub>12</sub>V<sup>IV</sup><sub>2</sub>O<sub>42</sub>}·18H<sub>2</sub>O (<b>3</b>), and {Cu­(en)<sub>2</sub>}<sub>3</sub>K<sub>2</sub>Na<sub>4</sub>{SiNb<sub>12</sub>V<sup>IV</sup><sub>2</sub>O<sub>42</sub>}·19H<sub>2</sub>O (<b>4</b>) (en = ethanediamine), composed of polyoxoanions [TNb<sub>12</sub>O<sub>40</sub>]<sup>16–</sup> (T = Si and Ge) and [Cu­(en)<sub>2</sub>]<sup>2+</sup> building blocks, were successfully synthesized under hydrothermal conditions by reaction of K<sub>7</sub>HNb<sub>6</sub>O<sub>19</sub>·13H<sub>2</sub>O, Cu­(Ac)<sub>2</sub>·3H<sub>2</sub>O, Na<sub>2</sub>VO<sub>3</sub>, Na<sub>2</sub>SiO<sub>3</sub>, or GeO<sub>2</sub> and en molecules. Polyoxoanion [TNb<sub>12</sub>VIV<sub>2</sub>O<sub>42</sub>]<sup>12–</sup> (T = Si and Ge) can be best described as a α-Keggin core [TNb<sub>12</sub>O<sub>40</sub>] with two [VO] units capping on its two “opened windows”. Compounds <b>1</b> and <b>3</b> are both composed of the bicapped heteropolyoxonibate core surrounded by a shell consisting of twelve [Cu­(en)<sub>2</sub>]<sup>2+</sup> groups, which represent a promising structural model toward core–shell nanostructures. Compounds <b>2</b> and <b>4</b> are also composed of a bicapped polyoxoanion [TNb<sub>12</sub>V<sup>IV</sup><sub>2</sub>O<sub>42</sub>]<sup>12–</sup> (T = Si, Ge) decorated by three metal–organic fragments [Cu­(en)<sub>2</sub>]<sup>2+</sup>, forming a trisupporting polyoxoanion {[Cu­(en)<sub>2</sub>]<sub>3</sub>[TNb<sub>12</sub>O<sub>42</sub>V<sup>IV</sup><sub>2</sub>]}<sup>6–</sup>. Antitumor, electrochemical study, and UV–vis spectra indicate that compounds <b>1</b>–<b>4</b> exhibit effective antitumor activity against SGC7901 cells and HepG2 cells and could keep the structural integrity in this process

    Four Polyoxonibate-Based Inorganic–Organic Hybrids Assembly from Bicapped Heteropolyoxonibate with Effective Antitumor Activity

    No full text
    Four novel heteropolyoxonibate-based inorganic–organic hybrids {Cu­(en)<sub>2</sub>}<sub>6</sub>{GeNb<sub>12</sub>V<sup>IV</sup><sub>2</sub>O<sub>42</sub>}·20H<sub>2</sub>O (<b>1</b>), {Cu­(en)<sub>2</sub>}<sub>3</sub>K<sub>2</sub>Na<sub>4</sub>{GeNb<sub>12</sub>V<sup>IV</sup><sub>2</sub>O<sub>42</sub>}·23H<sub>2</sub>O (<b>2</b>), {Cu­(en)<sub>2</sub>}<sub>6</sub>{SiNb<sub>12</sub>V<sup>IV</sup><sub>2</sub>O<sub>42</sub>}·18H<sub>2</sub>O (<b>3</b>), and {Cu­(en)<sub>2</sub>}<sub>3</sub>K<sub>2</sub>Na<sub>4</sub>{SiNb<sub>12</sub>V<sup>IV</sup><sub>2</sub>O<sub>42</sub>}·19H<sub>2</sub>O (<b>4</b>) (en = ethanediamine), composed of polyoxoanions [TNb<sub>12</sub>O<sub>40</sub>]<sup>16–</sup> (T = Si and Ge) and [Cu­(en)<sub>2</sub>]<sup>2+</sup> building blocks, were successfully synthesized under hydrothermal conditions by reaction of K<sub>7</sub>HNb<sub>6</sub>O<sub>19</sub>·13H<sub>2</sub>O, Cu­(Ac)<sub>2</sub>·3H<sub>2</sub>O, Na<sub>2</sub>VO<sub>3</sub>, Na<sub>2</sub>SiO<sub>3</sub>, or GeO<sub>2</sub> and en molecules. Polyoxoanion [TNb<sub>12</sub>VIV<sub>2</sub>O<sub>42</sub>]<sup>12–</sup> (T = Si and Ge) can be best described as a α-Keggin core [TNb<sub>12</sub>O<sub>40</sub>] with two [VO] units capping on its two “opened windows”. Compounds <b>1</b> and <b>3</b> are both composed of the bicapped heteropolyoxonibate core surrounded by a shell consisting of twelve [Cu­(en)<sub>2</sub>]<sup>2+</sup> groups, which represent a promising structural model toward core–shell nanostructures. Compounds <b>2</b> and <b>4</b> are also composed of a bicapped polyoxoanion [TNb<sub>12</sub>V<sup>IV</sup><sub>2</sub>O<sub>42</sub>]<sup>12–</sup> (T = Si, Ge) decorated by three metal–organic fragments [Cu­(en)<sub>2</sub>]<sup>2+</sup>, forming a trisupporting polyoxoanion {[Cu­(en)<sub>2</sub>]<sub>3</sub>[TNb<sub>12</sub>O<sub>42</sub>V<sup>IV</sup><sub>2</sub>]}<sup>6–</sup>. Antitumor, electrochemical study, and UV–vis spectra indicate that compounds <b>1</b>–<b>4</b> exhibit effective antitumor activity against SGC7901 cells and HepG2 cells and could keep the structural integrity in this process

    Four Polyoxonibate-Based Inorganic–Organic Hybrids Assembly from Bicapped Heteropolyoxonibate with Effective Antitumor Activity

    No full text
    Four novel heteropolyoxonibate-based inorganic–organic hybrids {Cu­(en)<sub>2</sub>}<sub>6</sub>{GeNb<sub>12</sub>V<sup>IV</sup><sub>2</sub>O<sub>42</sub>}·20H<sub>2</sub>O (<b>1</b>), {Cu­(en)<sub>2</sub>}<sub>3</sub>K<sub>2</sub>Na<sub>4</sub>{GeNb<sub>12</sub>V<sup>IV</sup><sub>2</sub>O<sub>42</sub>}·23H<sub>2</sub>O (<b>2</b>), {Cu­(en)<sub>2</sub>}<sub>6</sub>{SiNb<sub>12</sub>V<sup>IV</sup><sub>2</sub>O<sub>42</sub>}·18H<sub>2</sub>O (<b>3</b>), and {Cu­(en)<sub>2</sub>}<sub>3</sub>K<sub>2</sub>Na<sub>4</sub>{SiNb<sub>12</sub>V<sup>IV</sup><sub>2</sub>O<sub>42</sub>}·19H<sub>2</sub>O (<b>4</b>) (en = ethanediamine), composed of polyoxoanions [TNb<sub>12</sub>O<sub>40</sub>]<sup>16–</sup> (T = Si and Ge) and [Cu­(en)<sub>2</sub>]<sup>2+</sup> building blocks, were successfully synthesized under hydrothermal conditions by reaction of K<sub>7</sub>HNb<sub>6</sub>O<sub>19</sub>·13H<sub>2</sub>O, Cu­(Ac)<sub>2</sub>·3H<sub>2</sub>O, Na<sub>2</sub>VO<sub>3</sub>, Na<sub>2</sub>SiO<sub>3</sub>, or GeO<sub>2</sub> and en molecules. Polyoxoanion [TNb<sub>12</sub>VIV<sub>2</sub>O<sub>42</sub>]<sup>12–</sup> (T = Si and Ge) can be best described as a α-Keggin core [TNb<sub>12</sub>O<sub>40</sub>] with two [VO] units capping on its two “opened windows”. Compounds <b>1</b> and <b>3</b> are both composed of the bicapped heteropolyoxonibate core surrounded by a shell consisting of twelve [Cu­(en)<sub>2</sub>]<sup>2+</sup> groups, which represent a promising structural model toward core–shell nanostructures. Compounds <b>2</b> and <b>4</b> are also composed of a bicapped polyoxoanion [TNb<sub>12</sub>V<sup>IV</sup><sub>2</sub>O<sub>42</sub>]<sup>12–</sup> (T = Si, Ge) decorated by three metal–organic fragments [Cu­(en)<sub>2</sub>]<sup>2+</sup>, forming a trisupporting polyoxoanion {[Cu­(en)<sub>2</sub>]<sub>3</sub>[TNb<sub>12</sub>O<sub>42</sub>V<sup>IV</sup><sub>2</sub>]}<sup>6–</sup>. Antitumor, electrochemical study, and UV–vis spectra indicate that compounds <b>1</b>–<b>4</b> exhibit effective antitumor activity against SGC7901 cells and HepG2 cells and could keep the structural integrity in this process

    Four Polyoxonibate-Based Inorganic–Organic Hybrids Assembly from Bicapped Heteropolyoxonibate with Effective Antitumor Activity

    No full text
    Four novel heteropolyoxonibate-based inorganic–organic hybrids {Cu­(en)<sub>2</sub>}<sub>6</sub>{GeNb<sub>12</sub>V<sup>IV</sup><sub>2</sub>O<sub>42</sub>}·20H<sub>2</sub>O (<b>1</b>), {Cu­(en)<sub>2</sub>}<sub>3</sub>K<sub>2</sub>Na<sub>4</sub>{GeNb<sub>12</sub>V<sup>IV</sup><sub>2</sub>O<sub>42</sub>}·23H<sub>2</sub>O (<b>2</b>), {Cu­(en)<sub>2</sub>}<sub>6</sub>{SiNb<sub>12</sub>V<sup>IV</sup><sub>2</sub>O<sub>42</sub>}·18H<sub>2</sub>O (<b>3</b>), and {Cu­(en)<sub>2</sub>}<sub>3</sub>K<sub>2</sub>Na<sub>4</sub>{SiNb<sub>12</sub>V<sup>IV</sup><sub>2</sub>O<sub>42</sub>}·19H<sub>2</sub>O (<b>4</b>) (en = ethanediamine), composed of polyoxoanions [TNb<sub>12</sub>O<sub>40</sub>]<sup>16–</sup> (T = Si and Ge) and [Cu­(en)<sub>2</sub>]<sup>2+</sup> building blocks, were successfully synthesized under hydrothermal conditions by reaction of K<sub>7</sub>HNb<sub>6</sub>O<sub>19</sub>·13H<sub>2</sub>O, Cu­(Ac)<sub>2</sub>·3H<sub>2</sub>O, Na<sub>2</sub>VO<sub>3</sub>, Na<sub>2</sub>SiO<sub>3</sub>, or GeO<sub>2</sub> and en molecules. Polyoxoanion [TNb<sub>12</sub>VIV<sub>2</sub>O<sub>42</sub>]<sup>12–</sup> (T = Si and Ge) can be best described as a α-Keggin core [TNb<sub>12</sub>O<sub>40</sub>] with two [VO] units capping on its two “opened windows”. Compounds <b>1</b> and <b>3</b> are both composed of the bicapped heteropolyoxonibate core surrounded by a shell consisting of twelve [Cu­(en)<sub>2</sub>]<sup>2+</sup> groups, which represent a promising structural model toward core–shell nanostructures. Compounds <b>2</b> and <b>4</b> are also composed of a bicapped polyoxoanion [TNb<sub>12</sub>V<sup>IV</sup><sub>2</sub>O<sub>42</sub>]<sup>12–</sup> (T = Si, Ge) decorated by three metal–organic fragments [Cu­(en)<sub>2</sub>]<sup>2+</sup>, forming a trisupporting polyoxoanion {[Cu­(en)<sub>2</sub>]<sub>3</sub>[TNb<sub>12</sub>O<sub>42</sub>V<sup>IV</sup><sub>2</sub>]}<sup>6–</sup>. Antitumor, electrochemical study, and UV–vis spectra indicate that compounds <b>1</b>–<b>4</b> exhibit effective antitumor activity against SGC7901 cells and HepG2 cells and could keep the structural integrity in this process

    Four Polyoxonibate-Based Inorganic–Organic Hybrids Assembly from Bicapped Heteropolyoxonibate with Effective Antitumor Activity

    No full text
    Four novel heteropolyoxonibate-based inorganic–organic hybrids {Cu­(en)<sub>2</sub>}<sub>6</sub>{GeNb<sub>12</sub>V<sup>IV</sup><sub>2</sub>O<sub>42</sub>}·20H<sub>2</sub>O (<b>1</b>), {Cu­(en)<sub>2</sub>}<sub>3</sub>K<sub>2</sub>Na<sub>4</sub>{GeNb<sub>12</sub>V<sup>IV</sup><sub>2</sub>O<sub>42</sub>}·23H<sub>2</sub>O (<b>2</b>), {Cu­(en)<sub>2</sub>}<sub>6</sub>{SiNb<sub>12</sub>V<sup>IV</sup><sub>2</sub>O<sub>42</sub>}·18H<sub>2</sub>O (<b>3</b>), and {Cu­(en)<sub>2</sub>}<sub>3</sub>K<sub>2</sub>Na<sub>4</sub>{SiNb<sub>12</sub>V<sup>IV</sup><sub>2</sub>O<sub>42</sub>}·19H<sub>2</sub>O (<b>4</b>) (en = ethanediamine), composed of polyoxoanions [TNb<sub>12</sub>O<sub>40</sub>]<sup>16–</sup> (T = Si and Ge) and [Cu­(en)<sub>2</sub>]<sup>2+</sup> building blocks, were successfully synthesized under hydrothermal conditions by reaction of K<sub>7</sub>HNb<sub>6</sub>O<sub>19</sub>·13H<sub>2</sub>O, Cu­(Ac)<sub>2</sub>·3H<sub>2</sub>O, Na<sub>2</sub>VO<sub>3</sub>, Na<sub>2</sub>SiO<sub>3</sub>, or GeO<sub>2</sub> and en molecules. Polyoxoanion [TNb<sub>12</sub>VIV<sub>2</sub>O<sub>42</sub>]<sup>12–</sup> (T = Si and Ge) can be best described as a α-Keggin core [TNb<sub>12</sub>O<sub>40</sub>] with two [VO] units capping on its two “opened windows”. Compounds <b>1</b> and <b>3</b> are both composed of the bicapped heteropolyoxonibate core surrounded by a shell consisting of twelve [Cu­(en)<sub>2</sub>]<sup>2+</sup> groups, which represent a promising structural model toward core–shell nanostructures. Compounds <b>2</b> and <b>4</b> are also composed of a bicapped polyoxoanion [TNb<sub>12</sub>V<sup>IV</sup><sub>2</sub>O<sub>42</sub>]<sup>12–</sup> (T = Si, Ge) decorated by three metal–organic fragments [Cu­(en)<sub>2</sub>]<sup>2+</sup>, forming a trisupporting polyoxoanion {[Cu­(en)<sub>2</sub>]<sub>3</sub>[TNb<sub>12</sub>O<sub>42</sub>V<sup>IV</sup><sub>2</sub>]}<sup>6–</sup>. Antitumor, electrochemical study, and UV–vis spectra indicate that compounds <b>1</b>–<b>4</b> exhibit effective antitumor activity against SGC7901 cells and HepG2 cells and could keep the structural integrity in this process

    In Situ Synthesis of CdS/Graphdiyne Heterojunction for Enhanced Photocatalytic Activity of Hydrogen Production

    No full text
    Hydrogen production through artificial photosynthesis has been regarded as a promising strategy for dealing with energy shortage and environmental problems. In this work, graphdiyne (GD) was first introduced to the visible-light catalytic system for hydrogen production, in which a CdS/GD heterojunction was prepared through a simple in situ growth process by adding Cd­(AcO)<sub>2</sub> into a dimethyl sulfoxide (DMSO) solution containing GD substrate. The as-prepared CdS/GD heterojunction exhibits much higher performance for photocatalytic hydrogen evolution compared to that of pristine GD and CdS nanoparticles. The photocatalytic performance of CdS/GD heterostructure containing 2.5 wt % of GD (GD2.5) is 2.6 times higher than that of the pristine CdS nanoparticles. The enhanced catalytic performance can be ascribed to the formation of CdS/GD heterojunction, in which the presence of GD can not only stabilize CdS nanoparticles by preventing the agglomeration of CdS nanoparticles but also act as a photogenerated hole transfer material for efficiently separating photogenerated electron–hole pairs in CdS. Accordingly, this work provides the potential of GD-derived materials for solar energy conversion and storage

    Four Polyoxonibate-Based Inorganic–Organic Hybrids Assembly from Bicapped Heteropolyoxonibate with Effective Antitumor Activity

    No full text
    Four novel heteropolyoxonibate-based inorganic–organic hybrids {Cu­(en)<sub>2</sub>}<sub>6</sub>{GeNb<sub>12</sub>V<sup>IV</sup><sub>2</sub>O<sub>42</sub>}·20H<sub>2</sub>O (<b>1</b>), {Cu­(en)<sub>2</sub>}<sub>3</sub>K<sub>2</sub>Na<sub>4</sub>{GeNb<sub>12</sub>V<sup>IV</sup><sub>2</sub>O<sub>42</sub>}·23H<sub>2</sub>O (<b>2</b>), {Cu­(en)<sub>2</sub>}<sub>6</sub>{SiNb<sub>12</sub>V<sup>IV</sup><sub>2</sub>O<sub>42</sub>}·18H<sub>2</sub>O (<b>3</b>), and {Cu­(en)<sub>2</sub>}<sub>3</sub>K<sub>2</sub>Na<sub>4</sub>{SiNb<sub>12</sub>V<sup>IV</sup><sub>2</sub>O<sub>42</sub>}·19H<sub>2</sub>O (<b>4</b>) (en = ethanediamine), composed of polyoxoanions [TNb<sub>12</sub>O<sub>40</sub>]<sup>16–</sup> (T = Si and Ge) and [Cu­(en)<sub>2</sub>]<sup>2+</sup> building blocks, were successfully synthesized under hydrothermal conditions by reaction of K<sub>7</sub>HNb<sub>6</sub>O<sub>19</sub>·13H<sub>2</sub>O, Cu­(Ac)<sub>2</sub>·3H<sub>2</sub>O, Na<sub>2</sub>VO<sub>3</sub>, Na<sub>2</sub>SiO<sub>3</sub>, or GeO<sub>2</sub> and en molecules. Polyoxoanion [TNb<sub>12</sub>VIV<sub>2</sub>O<sub>42</sub>]<sup>12–</sup> (T = Si and Ge) can be best described as a α-Keggin core [TNb<sub>12</sub>O<sub>40</sub>] with two [VO] units capping on its two “opened windows”. Compounds <b>1</b> and <b>3</b> are both composed of the bicapped heteropolyoxonibate core surrounded by a shell consisting of twelve [Cu­(en)<sub>2</sub>]<sup>2+</sup> groups, which represent a promising structural model toward core–shell nanostructures. Compounds <b>2</b> and <b>4</b> are also composed of a bicapped polyoxoanion [TNb<sub>12</sub>V<sup>IV</sup><sub>2</sub>O<sub>42</sub>]<sup>12–</sup> (T = Si, Ge) decorated by three metal–organic fragments [Cu­(en)<sub>2</sub>]<sup>2+</sup>, forming a trisupporting polyoxoanion {[Cu­(en)<sub>2</sub>]<sub>3</sub>[TNb<sub>12</sub>O<sub>42</sub>V<sup>IV</sup><sub>2</sub>]}<sup>6–</sup>. Antitumor, electrochemical study, and UV–vis spectra indicate that compounds <b>1</b>–<b>4</b> exhibit effective antitumor activity against SGC7901 cells and HepG2 cells and could keep the structural integrity in this process

    Four Polyoxonibate-Based Inorganic–Organic Hybrids Assembly from Bicapped Heteropolyoxonibate with Effective Antitumor Activity

    No full text
    Four novel heteropolyoxonibate-based inorganic–organic hybrids {Cu­(en)<sub>2</sub>}<sub>6</sub>{GeNb<sub>12</sub>V<sup>IV</sup><sub>2</sub>O<sub>42</sub>}·20H<sub>2</sub>O (<b>1</b>), {Cu­(en)<sub>2</sub>}<sub>3</sub>K<sub>2</sub>Na<sub>4</sub>{GeNb<sub>12</sub>V<sup>IV</sup><sub>2</sub>O<sub>42</sub>}·23H<sub>2</sub>O (<b>2</b>), {Cu­(en)<sub>2</sub>}<sub>6</sub>{SiNb<sub>12</sub>V<sup>IV</sup><sub>2</sub>O<sub>42</sub>}·18H<sub>2</sub>O (<b>3</b>), and {Cu­(en)<sub>2</sub>}<sub>3</sub>K<sub>2</sub>Na<sub>4</sub>{SiNb<sub>12</sub>V<sup>IV</sup><sub>2</sub>O<sub>42</sub>}·19H<sub>2</sub>O (<b>4</b>) (en = ethanediamine), composed of polyoxoanions [TNb<sub>12</sub>O<sub>40</sub>]<sup>16–</sup> (T = Si and Ge) and [Cu­(en)<sub>2</sub>]<sup>2+</sup> building blocks, were successfully synthesized under hydrothermal conditions by reaction of K<sub>7</sub>HNb<sub>6</sub>O<sub>19</sub>·13H<sub>2</sub>O, Cu­(Ac)<sub>2</sub>·3H<sub>2</sub>O, Na<sub>2</sub>VO<sub>3</sub>, Na<sub>2</sub>SiO<sub>3</sub>, or GeO<sub>2</sub> and en molecules. Polyoxoanion [TNb<sub>12</sub>VIV<sub>2</sub>O<sub>42</sub>]<sup>12–</sup> (T = Si and Ge) can be best described as a α-Keggin core [TNb<sub>12</sub>O<sub>40</sub>] with two [VO] units capping on its two “opened windows”. Compounds <b>1</b> and <b>3</b> are both composed of the bicapped heteropolyoxonibate core surrounded by a shell consisting of twelve [Cu­(en)<sub>2</sub>]<sup>2+</sup> groups, which represent a promising structural model toward core–shell nanostructures. Compounds <b>2</b> and <b>4</b> are also composed of a bicapped polyoxoanion [TNb<sub>12</sub>V<sup>IV</sup><sub>2</sub>O<sub>42</sub>]<sup>12–</sup> (T = Si, Ge) decorated by three metal–organic fragments [Cu­(en)<sub>2</sub>]<sup>2+</sup>, forming a trisupporting polyoxoanion {[Cu­(en)<sub>2</sub>]<sub>3</sub>[TNb<sub>12</sub>O<sub>42</sub>V<sup>IV</sup><sub>2</sub>]}<sup>6–</sup>. Antitumor, electrochemical study, and UV–vis spectra indicate that compounds <b>1</b>–<b>4</b> exhibit effective antitumor activity against SGC7901 cells and HepG2 cells and could keep the structural integrity in this process
    corecore