926 research outputs found

    Rigid vortices in MgB2

    Full text link
    Magnetic relaxation of high-pressure synthesized MgB2_2 bulks with different thickness is investigated. It is found that the superconducting dia-magnetic moment depends on time in a logarithmic way; the flux-creep activation energy decreases linearly with the current density (as expected by Kim-Anderson model); and the activation energy increases linearly with the thickness of sample when it is thinner than about 1 mm. These features suggest that the vortices in the MgB2_2 are rather rigid, and the pinning and creep can be well described by Kim-Anderson model.Comment: Typo corrected & reference adde

    Involvement of lysophosphatidic acid in bone cancer pain by potentiation of TRPV1 via PKCϵ pathway in dorsal root ganglion neurons

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>It has been demonstrated that lysophosphatidic acid (LPA) released from injury tissue and transient receptor potential vanilloid 1 (TRPV1) receptor are implicated in the induction of chronic pain. In the present study we examined whether an interaction between LPA receptor LPA<sub>1 </sub>and TRPV1 in dorsal root ganglion (DRG) neurons contributes to the development of bone cancer pain.</p> <p>Results</p> <p>Bone cancer was established by injection of mammary gland carcinoma cells into the rat tibia. Following the development of bone cancer pain, the TRPV1 expression and capsaicin-evoked currents were up-regulated in rat DRG neurons at L<sub>4-6 </sub>segments. Immunohistochemistry staining revealed a high co-localization of LPA<sub>1 </sub>with TRPV1 in DRG neurons. In isolated DRG neurons, whole-cell patch recording showed that capsaicin-induced currents were potentiated by LPA in a dose-dependent manner. The potentiation was blocked by either LPA<sub>1 </sub>antagonist, protein kinase C (PKC) inhibitor or PKCϵ inhibitor, but not by protein kinase A (PKA) inhibitor or Rho inhibitor. In the behavioral tests, both mechanical allodynia and thermal hyperalgesia in bone cancer rats were attenuated by LPA<sub>1 </sub>antagonist.</p> <p>Conclusion</p> <p>LPA potentiates TRPV1 current via a PKCϵ-dependent pathway in DRG neurons of rats with bone cancer, which may be a novel peripheral mechanism underlying the induction of bone cancer pain.</p

    Eos Negatively Regulates Human γ-globin Gene Transcription during Erythroid Differentiation

    Get PDF
    BACKGROUND: Human globin gene expression is precisely regulated by a complicated network of transcription factors and chromatin modifying activities during development and erythropoiesis. Eos (Ikaros family zinc finger 4, IKZF4), a member of the zinc finger transcription factor Ikaros family, plays a pivotal role as a repressor of gene expression. The aim of this study was to examine the role of Eos in globin gene regulation. METHODOLOGY/PRINCIPAL FINDINGS: Western blot and quantitative real-time PCR detected a gradual decrease in Eos expression during erythroid differentiation of hemin-induced K562 cells and Epo-induced CD34+ hematopoietic stem/progenitor cells (HPCs). DNA transfection and lentivirus-mediated gene transfer demonstrated that the enforced expression of Eos significantly represses the expression of γ-globin, but not other globin genes, in K562 cells and CD34+ HPCs. Consistent with a direct role of Eos in globin gene regulation, chromatin immunoprecipitaion and dual-luciferase reporter assays identified three discrete sites located in the DNase I hypersensitivity site 3 (HS3) of the β-globin locus control region (LCR), the promoter regions of the Gγ- and Aγ- globin genes, as functional binding sites of Eos protein. A chromosome conformation capture (3C) assay indicated that Eos may repress the interaction between the LCR and the γ-globin gene promoter. In addition, erythroid differentiation was inhibited by enforced expression of Eos in K562 cells and CD34+ HPCs. CONCLUSIONS/SIGNIFICANCE: Our results demonstrate that Eos plays an important role in the transcriptional regulation of the γ-globin gene during erythroid differentiation

    Strong quantum fluctuation of vortices in the new superconductor MgB2MgB_2

    Full text link
    By using transport and magnetic measurement, the upper critical field Hc2(T)H_{c2}(T) and the irreversibility line Hirr(T)H_{irr}(T) has been determined. A big separation between Hc2(0)H_{c2}(0) and Hirr(0)H_{irr}(0) has been found showing the existence of a quantum vortex liquid state induced by quantum fluctuation of vortices in the new superconductor MgB2MgB_2. Further investigation on the magnetic relaxation shows that both the quantum tunneling and the thermally activated flux creep weakly depends on temperature. But when the melting field HirrH_{irr} is approached, a drastic rising of the relaxation rate is observed. This may imply that the melting of the vortex matter at a finite temperature is also induced by the quantum fluctuation of vortices.Comment: 4 pages, 4 figure

    Possible Superconductivity at 37 K in Graphite-Sulfur Composite

    Full text link
    Sulfur intercalated graphite composites with diamagnetic transitions at 6.7 K and 37 K are prepared. The magnetization hysteresis loops (MHL), Xray diffraction patterns, and resistance were measured. From the MHL, a slight superconducting like penetration process is observed at 15 K in low field region. The XRD shows no big difference from the mixture of graphite and sulfur indicating that the volume of the superconducting phase (if any) is very small. The temperature dependence of resistance shows a typical semiconducting behavior with a saturation in low temperature region. This saturation is either induced by the de-localization of conducting electrons or by possible superconductivity in this system.Comment: CHIN. PHYS.LETT v18 1648 (2001
    • …
    corecore