8,776 research outputs found

    Second and third orders asymptotic expansions for the distribution of particles in a branching random walk with a random environment in time

    Full text link
    Consider a branching random walk in which the offspring distribution and the moving law both depend on an independent and identically distributed random environment indexed by the time.For the normalised counting measure of the number of particles of generation nn in a given region, we give the second and third orders asymptotic expansions of the central limit theorem under rather weak assumptions on the moments of the underlying branching and moving laws. The obtained results and the developed approaches shed light on higher order expansions. In the proofs, the Edgeworth expansion of central limit theorems for sums of independent random variables, truncating arguments and martingale approximation play key roles. In particular, we introduce a new martingale, show its rate of convergence, as well as the rates of convergence of some known martingales, which are of independent interest.Comment: Accepted by Bernoull

    A differential cluster variation method for analysis of spiniodal decomposition in alloys

    Full text link
    A differential cluster variation method (DCVM) is proposed for analysis of spinoidal decomposition in alloys. In this method, lattice symmetry operations in the presence of an infinitesimal composition gradient are utilized to deduce the connection equations for the correlation functions and to reduce the number of independent variables in the cluster variation analysis. Application of the method is made to calculate the gradient energy coefficient in the Cahn-Hilliard free energy function and the fastest growing wavelength for spinodal decomposition in Al-Li alloys. It is shown that the gradient coefficient of congruently ordered Al-Li alloys is much larger than that of the disordered system. In such an alloy system, the calculated fastest growing wavelength is approximately 10 nm, which is an order of magnitude larger than the experimentally observed domain size. This may provide a theoretical explanation why spinodal decomposition after a congruent ordering is dominated by the antiphase boundaries.Comment: 15 pages, 7 figure

    A method for getting a finite α\alpha in the IR region from an all-order beta function

    Full text link
    The analytical method of QCD running coupling constant is extended to a model with an all-order beta function which is inspired by the famous Novikov-Shifman-Vai\-n\-s\-htein-Zakharov beta function of N=1 supersymmetric gau\-g\-e theories. In the approach presented here, the running coupling is determined by a transcendental equation with non-elementary integral of the running scale μ\mu. In our approach αan(0)\alpha_{an}(0), which reads 0.30642, does not rely on any dimensional parameters. This is in accordance with results in the literature on the analytical method of QCD running coupling constant. The new "analytically im\-p\-roved" running coupling constant is also compatible with the property of asymptotic freedom.Comment: 5 pages, 3 figure
    corecore