76 research outputs found

    Learning to represent surroundings, anticipate motion and take informed actions in unstructured environments

    Get PDF
    Contemporary robots have become exceptionally skilled at achieving specific tasks in structured environments. However, they often fail when faced with the limitless permutations of real-world unstructured environments. This motivates robotics methods which learn from experience, rather than follow a pre-defined set of rules. In this thesis, we present a range of learning-based methods aimed at enabling robots, operating in dynamic and unstructured environments, to better understand their surroundings, anticipate the actions of others, and take informed actions accordingly

    Pedestrian Trajectory Prediction Using Dynamics-based Deep Learning

    Full text link
    Pedestrian trajectory prediction plays an important role in autonomous driving systems and robotics. Recent work utilising prominent deep learning models for pedestrian motion prediction makes limited a priori assumptions about human movements, resulting in a lack of explainability and explicit constraints enforced on predicted trajectories. This paper presents a dynamics-based deep learning framework where a novel asymptotically stable dynamical system is integrated into a deep learning model. Our novel asymptotically stable dynamical system is used to model human goal-targeted motion by enforcing the human walking trajectory converges to a predicted goal position and provides a deep learning model with prior knowledge and explainability. Our deep learning model utilises recent innovations from transformer networks and is used to learn some features of human motion, such as collision avoidance, for our proposed dynamical system. The experimental results show that our framework outperforms recent prominent models in pedestrian trajectory prediction on five benchmark human motion datasets.Comment: 8 pages (including references), 5 figures, submitted to ICRA2024 for revie

    FH535, a β-catenin Pathway Inhibitor, Represses Pancreatic Cancer Xenograft Growth and Angiogenesis

    Get PDF
    The WNT/β-catenin pathway plays an important role in pancreatic cancer carcinogenesis. We evaluated the correlation between aberrant β-catenin pathway activation and the prognosis pancreatic cancer, and the potential of applying the β-catenin pathway inhibitor FH535 to pancreatic cancer treatment. Meta-analysis and immunohistochemistry showed that abnormal β-catenin pathway activation was associated with unfavorable outcome. FH535 repressed pancreatic cancer xenograft growth in vivo. Gene Ontology (GO) analysis of microarray data indicated that target genes responding to FH535 participated in stemness maintenance. Real-time PCR and flow cytometry confirmed that FH535 downregulated CD24 and CD44, pancreatic cancer stem cell (CSC) markers, suggesting FH535 impairs pancreatic CSC stemness. GO analysis of β-catenin chromatin immunoprecipitation sequencing data identified angiogenesis-related gene regulation. Immunohistochemistry showed that higher microvessel density correlated with elevated nuclear β-catenin expression and unfavorable outcome. FH535 repressed the secretion of the proangiogenic cytokines vascular endothelial growth factor (VEGF), interleukin (IL)-6, IL-8, and tumor necrosis factor-α, and also inhibited angiogenesis in vitro and in vivo. Protein and mRNA microarrays revealed that FH535 downregulated the proangiogenic genes ANGPT2, VEGFR3, IFN-γ, PLAUR, THPO, TIMP1, and VEGF. FH535 not only represses pancreatic CSC stemness in vitro, but also remodels the tumor microenvironment by repressing angiogenesis, warranting further clinical investigation
    • …
    corecore