2,797 research outputs found

    Classification under Streaming Emerging New Classes: A Solution using Completely Random Trees

    Get PDF
    This paper investigates an important problem in stream mining, i.e., classification under streaming emerging new classes or SENC. The common approach is to treat it as a classification problem and solve it using either a supervised learner or a semi-supervised learner. We propose an alternative approach by using unsupervised learning as the basis to solve this problem. The SENC problem can be decomposed into three sub problems: detecting emerging new classes, classifying for known classes, and updating models to enable classification of instances of the new class and detection of more emerging new classes. The proposed method employs completely random trees which have been shown to work well in unsupervised learning and supervised learning independently in the literature. This is the first time, as far as we know, that completely random trees are used as a single common core to solve all three sub problems: unsupervised learning, supervised learning and model update in data streams. We show that the proposed unsupervised-learning-focused method often achieves significantly better outcomes than existing classification-focused methods

    From Type-II Triply Degenerate Nodal Points and Three-Band Nodal Rings to Type-II Dirac Points in Centrosymmetric Zirconium Oxide

    Full text link
    Using first-principles calculations, we report that ZrO is a topological material with the coexistence of three pairs of type-II triply degenerate nodal points (TNPs) and three nodal rings (NRs), when spin-orbit coupling (SOC) is ignored. Noticeably, the TNPs reside around Fermi energy with large linear energy range along tilt direction (> 1 eV) and the NRs are formed by three strongly entangled bands. Under symmetry-preserving strain, each NR would evolve into four droplet-shaped NRs before fading away, producing distinct evolution compared with that in usual two-band NR. When SOC is included, TNPs would transform into type-II Dirac points while all the NRs have gaped. Remarkably, the type-II Dirac points inherit the advantages of TNPs: residing around Fermi energy and exhibiting large linear energy range. Both features facilitate the observation of interesting phenomena induced by type-II dispersion. The symmetry protections and low-energy Hamiltonian for the nontrivial band crossings are discussed.Comment: 7 pages, 5 figures, J. Phys. Chem. Lett. 201
    • …
    corecore