39 research outputs found

    Dual-Polarized On-Chip Antenna for 300 GHz Full-Duplex Communication System

    Get PDF
    This paper presents a novel design of compact orthogonally polarized on-chip antenna to realize 300 GHz full-duplex communication system with high isolation. It consists of a dipole antenna for horizontal polarization and a disk-loaded monopole antenna for vertical polarization. They are in good cross-polarization state with more than 90 dB of self-interference suppression and then can be used to achieve good isolation between transmitting and receiving antennas. In addition, two dual-polarized antennas have been adopted in two separated transceivers to study their isolation performance. Furthermore, this compact antenna only occupies an active area of 390 μm × 300 μm × 78 μm and can be used for multiple-input multiple-output application as well

    Classification of colon adenocarcinoma based on immunological characterizations: Implications for prognosis and immunotherapy

    Get PDF
    Accurate immune molecular typing is pivotal for screening out patients with colon adenocarcinoma (COAD) who may benefit from immunotherapy and whose tumor microenvironment (TME) was needed for reprogramming to beneficial immune-mediated responses. However, little is known about the immune characteristic of COAD. Here, by calculating the enrichment score of immune characteristics in three online COAD datasets (TCGA-COAD, GSE39582, and GSE17538), we identified 17 prognostic-related immune characteristics that overlapped in at least two datasets. We determined that COADs could be stratified into three immune subtypes (IS1–IS3), based on consensus clustering of these 17 immune characteristics. Each of the three ISs was associated with distinct clinicopathological characteristics, genetic aberrations, tumor-infiltrating immune cell composition, immunophenotyping (immune “hot” and immune “cold”), and cytokine profiles, as well as different clinical outcomes and immunotherapy/therapeutic response. Patients with the IS1 tumor had high immune infiltration but immunosuppressive phenotype, IS3 tumor is an immune “hot” phenotype, whereas those with the IS2 tumor had an immune “cold” phenotype. We further verified the distinct immune phenotype of IS1 and IS3 by an in-house COAD cohort. We propose that the immune subtyping can be utilized to identify COAD patients who will be affected by the tumor immune microenvironment. Furthermore, the ISs may provide a guide for personalized cancer immunotherapy and for tumor prognosis

    Dysregulation of AKT Pathway by SMYD2-Mediated Lysine Methylation on PTEN

    Get PDF
    Phosphatase and tensin homologue (PTEN), one of the well-characterized tumor suppressor proteins, counteracts the phosphatidylinositol 3-kinase-AKT pathway through its unique lipid phosphatase activity. The functions of PTEN are regulated by a variety of posttranslational modifications such as acetylation, oxidation, ubiquitylation, phosphorylation, and SUMOylation. However, methylation of PTEN has not been reported so far. In this study, we demonstrated that the oncogenic protein lysine methyltransferase SET and MYND domain containing 2 (SMYD2) methylates PTEN at lysine 313 in vitro and in vivo. Knockdown of SMYD2 suppressed the cell growth of breast cancer cells and attenuated phosphorylation levels of AKT, indicating that SMYD2-mediated methylation negatively regulates PTEN tumor suppressor activity and results in activation of the phosphatidylinositol 3-kinase-AKT pathway. Furthermore, PTEN protein with lysine 313 substitution diminished phosphorylation of PTEN at serine 380, which is known to inactivate tumor suppressor functions of PTEN. Taken together, our findings unveil a novel mechanism of PTEN dysregulation regulated by lysine methylation in human cancer

    Manufacturing Quality Prediction Using Intelligent Learning Approaches: A Comparative Study

    No full text
    Under the international background of the transformation and promotion of manufacturing, the Chinese government proposed the “Made in China 2025” strategy, which focused on the improvement of a quality-based innovation ability. Moreover, predicting manufacturing quality is one of the crucial measures for quality management. Accurate prediction is closely related to the feature learning of manufacturing processes. Therefore, two categories of intelligent learning approaches, i.e., shallow learning and deep learning, are investigated and compared for manufacturing quality prediction in this paper. Specifically, the feed forward neural network (FFNN) with one hidden layer and the least squares support vector machine (LSSVM) with no hidden layers are selected as the representatives for shallow learning, and the deep restricted Boltzmann machine (DRBM) and the stack autoencoder (SAE) are chosen as the representatives for deep learning. The manufacturing data is collected from a competition about manufacturing quality control in the Tianchi Data Lab of China. The experiments show that the deep framework overwhelms the shallow architecture in terms of mean absolute percentage error, root-mean-square error, and threshold statistics. In addition, the prediction results also indicate that the performances depend on the length of the training data. That is, the bigger the sample size is, the better the performance is

    MyD88 in myofibroblasts enhances nonalcoholic fatty liver disease-related hepatocarcinogenesis via promoting macrophage M2 polarization

    No full text
    Abstract Background Nonalcoholic fatty liver disease (NAFLD) is a major cause of chronic liver diseases and has emerged as the leading factor in the pathogenesis of hepatocellular carcinoma (HCC). MyD88 contributes to the development of HCC. However, the underlying mechanism by which MyD88 in myofibroblasts regulates NAFLD-associated liver cancer development remains unknown. Results Myofibroblast MyD88-deficient (SMAMyD88−/−) mice were protected from diet-induced obesity and developed fewer and smaller liver tumors. MyD88 deficiency in myofibroblasts attenuated macrophage M2 polarization and fat accumulation in HCC tissues. Mechanistically, MyD88 signaling in myofibroblasts enhanced CCL9 secretion, thereby promoting macrophage M2 polarization. This process may depend on the CCR1 receptor and STAT6/ PPARβ pathway. Furthermore, liver tumor growth was attenuated in mice treated with a CCR1 inhibitor. CCLl5 (homologous protein CCL9 in humans) expression was increased in myofibroblasts of HCC and was associated with shorter survival of patients with HCC. Thus, our results indicate that MyD88 in myofibroblasts promotes NAFLD-related HCC progression and may be a promising therapeutic target for HCC treatment. Conclusion This study demonstrates that MyD88 in myofibroblasts can promote nonalcoholic fatty liver disease-related hepatocarcinogenesis by enhancing macrophage M2 polarization, which might provide a potential molecular therapeutic target for HCC. Graphical Abstrac

    Reversible Transformation of Nanostructured Polymer Particles

    No full text
    A reversible transformation of overall shape and internal structure as well as surface composition of nanostructured block copolymer particles is demonstrated by solvent-adsorption annealing. Polystyrene-<i>b</i>-poly­(4-vinylpyridine) (PS-<i>b</i>-P4VP) pupa-like particles with PS and P4VP lamellar domains alternatively stacked can be obtained by self-assembly of the block copolymer under 3D soft confinement. Chloroform, a good solvent for both blocks, is selected to swell and anneal the pupa-like particles suspended in aqueous media. Reversible transformation between pupa-like and onion-like structures of the particles can be readily tuned by simply adjusting the particle/aqueous solution interfacial property. Interestingly, poly­(vinyl alcohol) (PVA) concentration in the aqueous media plays a critical role in determining the particle morphology. High level of PVA concentration is favorable for pupa-like morphology, while extremely low concentration of PVA is favorable for the formation of onion-like particles. Moreover, the stimuli-response behavior of the particles can be highly suppressed through selective growth of Au nanoparticles within the P4VP domains. This strategy provides a new concept for the reversible transformation of nanostructured polymer particles, which will find potential applications in the field of sensing, detection, optical devices, drug delivery, and smart materials fabrication

    Soft Colloidal Molecules with Tunable Geometry by 3D Confined Assembly of Block Copolymers

    No full text
    We present with experiments and computer simulations that colloidal molecules with tunable geometry can be generated through 3D confined assembly of diblock copolymers. This unique self-assembly can be attributed to the slight solvent selectivity, nearly neutral confined interface, deformable soft confinement space, and strong confinement degree. We show that the symmetric geometry of the colloidal molecules originates from the free energy minimization. Moreover, these colloidal molecules with soft nature and directional interaction can further self-assemble into hierarchical superstructures without any modification. We anticipate that these new findings are helpful to extend the scope of our knowledge for the diblock copolymer self-assembly, and the colloidal molecules with new composition and performance will bring new opportunities to this emerging field
    corecore