240 research outputs found

    Electronic nose for analysis of volatile organic compounds in air and exhaled breath.

    Get PDF
    Exhaled breath is a complex mixture containing numerous volatile organic compounds (VOCs) at trace levels (ppb to ppt) including hydrocarbons, alcohols, ketones, aldehydes, esters and other non-volatile compounds. Different patterns of VOCs have been correlated with various diseases. The concentration levels of VOCs in exhaled breath depend on an individual subject’s health status. Therefore, breath analysis has great potential for clinical diagnostics, monitoring therapeutic progress and drug metabolic products. Even though up to 3000 compounds may be detected in breath, the matrix of exhaled breath is less complex than that of blood or other body fluids. Breath analysis can be performed on people irrespective of age, gender, lifestyle, or other confounding factors. Breath gas concentration can be related to VOC concentrations in blood via mathematical modeling; for example, as in blood alcohol testing. Since exhaled breath samples are easy to collect and online instruments are commercially available, VOC analysis in exhaled breath appears to be a promising tool for noninvasive detection and monitoring of diseases. Breath analysis has been very successful in identifying cancer, diabetes and other diseases by using a chemiresistor sensor array to detect biomarkers. The objective of this research project is to develop sensor arrays ― or so-called electronic nose ― for analysis of VOCs in air and exhaled breath. In this dissertation, we have investigated both commercial and synthesized thiol functionalized gold nanoparticles (AuNPs) as sensing materials for analysis of VOCs in air and exhaled breath. The advantages of these sensors include very high sensitivity, selectivity for detection of target analytes and operation at ambient temperature. The synthesis and material characterization of new thiols and AuNPs for increasing sensitivity and selectivity have been studied. Selected commercial thiols and in-house synthesized new functional thiols have been used to modify AuNP-based sensors for detection of VOCs in air and exhaled breath. The interdigitated electrodes (IDE) used for the sensors were fabricated by microelectromechanical systems (MEMS) microfabrication technologies. The sensor arrays were characterized by measuring the resistance difference from vacuum and different spiked analyte concentrations in air and breath samples. Air samples and breath samples were collected using Tedlar bags, and analyzed using the thiol functionalized AuNP sensors. The analysis of air samples provides a reference for analysis of exhaled breath samples. The sensors have demonstrated a low detection limit of 0.1 ppbv of acetone and ethanol in dry air and exhaled breath. The concentrations of acetone in air and exhaled breath were determined by a silicon microreactor approach. The measurements of acetone by the microreactor approach were correlated with the sensor signals. The intellectual thrust of this research is the rational design of an electronic nose for analysis of VOCs in exhaled breath, which offers a new frontier in medical diagnostics because of its non-invasive and inexpensive characteristics

    Microwave-assisted synthesized SAPO-56 as a catalyst in the conversion of CO2 to cyclic carbonates.

    Get PDF
    The effective utilization of CO2 as a renewable raw material for the production of useful chemicals is an area of great interest. In particular, the catalytic conversion of CO2 into cyclic carbonates, which are useful chemical intermediates employed for the production of plastics and organic solvents, represents an attractive route for the efficient use of carbon dioxide. Microporous crystals, including zeolites and metal organic frameworks (MOFs), and mesoporous ordered oxides possess many desirable properties, which make them appealing for cycloaddition reactions. In general, these porous materials display chemical and thermal stability, moderate to high CO2 uptakes, an open porous structure for improved mass transfer, accessible pore volumes, acid sites which are known as active sites for cycloaddition reactions, high surface areas. SAPOs (silicoaluminophosphates), a particular type of small pore molecular sieves, have received considerable interest because of their applications in separations, catalysis, and adsorption. Their unique functional properties are associated with their chemical and thermal stability, unique shape selectivity, molecular sieving properties, ordered microporous crystalline structure, and surface properties. SAPO-56 is a crystalline microporous silicoaluminophosphate in which silicon substitutes for some of the phosphorous and aluminum atoms in the structural framework. The AFX topology of SAPO-56 is characterized by a three dimensional structure with pore cages arranged in interconnected networks, with window (pore size) sizes of ~3.4×3.6 Å. Due to its pore size similar to the kinetic diameter of several relevant gas molecules such as CO2, CH4, O2, N2 as well as due to relatively high CO2 uptakes, SAPO-56 may find potential applications for CO2 conversion to useful chemicals. A conventional hydrothermal synthesis approach used to synthesize SAPO-56 requires typically long synthesis times (days) and relatively high hydrothermal temperatures (200 °C). Microwave heating offers several advantages over conventional heating, such as fast crystallization, phase selectivity, narrow particle size distribution, abundant nucleation, morphology and size control and rapid and uniform heating. Herein we present the synthesis of SAPO-56 crystals via microwave heating. The resultant crystals displayed high catalytic activity in the synthesis of chloropropene carbonate from CO2 and epichlorohydrin. The Microwave as-synthesized SAPO-56 displayed crystal size as ~3-4 µm, while the crystal size hydrothermal as-synthesized SAPO-56 is ~50 µm. When 3-4 µm crystals were used, the yield to chloropropene carbonate was 84.8%, whereas the yield to the carbonate was only 42.2% when crystals of about 50 µm were used. The enhanced catalytic activity of SAPO-56 crystals was related to their high CO2 adsorption capacity, small crystal size, and the presence of acid sites. In addition, silica nanospheres present in the surface of the smaller SAPO-56 crystals may display a role as specific surface sites for the cycloaddition reaction. For this particular reaction, SAPO-56 seems to be robust catalytic phase because it can be recycled without loss in the catalytic activity

    Application of mNGS in the study of pulmonary microbiome in pneumoconiosis complicated with pulmonary infection patients and exploration of potential biomarkers

    Get PDF
    BackgroundPneumoconiosis patients have a high prevalence of pulmonary infections, which can complicate diagnosis and treatment. And there is no comprehensive study of the microbiome of patients with pneumoconiosis. The application of metagenomic next-generation sequencing (mNGS) fills the gap to some extent by analyzing the lung microbiota of pneumoconiosis population while achieving accurate diagnosis.MethodsWe retrospectively analyzed 44 patients with suspected pneumoconiosis complicated with pulmonary infection between Jan 2020 and Nov 2022. Bronchoalveolar lavage fluid (BALF) specimens from 44 patients were collected and tested using the mNGS technology.ResultsAmong the lung microbiome of pneumoconiosis patients with complicated pulmonary infection (P group), the most frequently detected bacteria and fungi at the genus level were Streptococcus and Aspergillus, at the species level were Streptococcus pneumoniae and Aspergillus flavus, respectively, and the most frequently detected DNA virus was Human gammaherpesvirus 4. There was no significant difference in α diversity between the P group and the non-pneumoconiosis patients complicated with pulmonary infection group (Non-P group) in pulmonary flora, while P< 0.01 for β diversity analysis, and the differential species between the two groups were Mycobacterium colombiense and Fusobacterium nucleatum. In addition, we monitored a high distribution of Malassezia and Pneumocystis in the P group, while herpes virus was detected in the majority of samples.ConclusionsOverall, we not only revealed a comprehensive lung microbiome profile of pneumoconiosis patients, but also compared the differences between their microbiome and that of non-pneumoconiosis complicated with pulmonary infection patients. This provides a good basis for a better understanding of the relationship between pneumoconiosis and microorganisms, and for the search of potential biomarkers

    Spatiotemporal Analysis of Drought Characteristics in Song-Liao River Basin in China

    Get PDF
    The monthly accumulated precipitation and monthly average temperature of 117 meteorological stations in Song-Liao River Basin (SLRB) were used to calculate the Standardized Precipitation Evapotranspiration Indices (SPEI) to analyze the drought characteristics, including long-term trends, drought affected area, climate abrupt change, intensive drought occurrence regions, and drought durations during 1964–2013 with the support of GIS. The Area Drought Severity (ADS), a comprehensive index, is proposed to assess both the variations of drought degree and the extent of the drought affected area. The results revealed that (1) the drought happening probability and degree are rising and the affected areas of all degrees of drought have an increasing trend during the last 50 years; (2) there is a climate abrupt change which occurred in around 1994, and the area with declining SPEI is larger than that with declining SPI, which could be due to the rising temperature after the climate abrupt change; (3) all degrees of drought occurrence probability increased, and the intensive drought occurrence regions altered from the northern SLRB to the southwestern SLRB after the climate abrupt change; (4) the drought duration increased from 1994, and the increased drought durations occurred in most parts of SLRB

    FvBck1, a component of cell wall integrity MAP kinase pathway, is required for virulence and oxidative stress response in sugarcane Pokkah Boeng pathogen

    Get PDF
    Fusarium verticillioides (formerly F. moniliforme) is suggested as one of the causal agents of Pokkah Boeng, a serious disease of sugarcane worldwide. Currently, detailed molecular and physiological mechanism of pathogenesis is unknown. In this study, we focused on cell wall integrity MAPK pathway as one of the potential signaling mechanisms associated with Pokkah Boeng pathogenesis. We identified FvBCK1 gene that encodes a MAP kinase kinase kinase homolog and determined that it is not only required for growth, micro- and macro-conidia production, and cell wall integrity but also for response to osmotic and oxidative stresses. The deletion of FvBCK1 caused a significant reduction in virulence and FB1 production, a carcinogenic mycotoxin produced by the fungus. Moreover, we found the expression levels of three genes, which are known to be involved in superoxide scavenging, were down regulated in the mutant. We hypothesized that the loss of superoxide scavenging capacity was one of the reasons for reduced virulence, but overexpression of catalase or peroxidase gene failed to restore the virulence defect in the deletion mutant. When we introduced Magnaporthe oryzae MCK1 into the FvBck1 deletion mutant, while certain phenotypes were restored, the complemented strain failed to gain full virulence. In summary, FvBck1 plays a diverse role in F. verticillioides, and detailed investigation of downstream signaling pathways will lead to a better understanding of how this MAPK pathway regulates Pokkah Boeng on sugarcane

    Response of bacterial community metabolites to bacterial wilt caused by Ralstonia solanacearum: a multi-omics analysis

    Get PDF
    The soil microbial community plays a critical role in promoting robust plant growth and serves as an effective defence mechanism against root pathogens. Current research has focused on unravelling the compositions and functions of diverse microbial taxa in plant rhizospheres invaded by Ralstonia solanacearum, however, the specific mechanisms by which key microbial groups with distinct functions exert their effects remain unclear. In this study, we employed a combination of amplicon sequencing and metabolomics analysis to investigate the principal metabolic mechanisms of key microbial taxa in plant rhizosphere soil. Compared to the healthy tobacco rhizosphere samples, the bacterial diversity and co-occurrence network of the diseased tobacco rhizosphere soil were significantly reduced. Notably, certain genera, including Gaiella, Rhodoplanes, and MND1 (Nitrosomonadaceae), were found to be significantly more abundant in the rhizosphere of healthy plants than in that of diseased plants. Eight environmental factors, including exchangeable magnesium, available phosphorus, and pH, were found to be crucial factors influencing the composition of the microbial community. Ralstonia displayed negative correlations with pH, exchangeable magnesium, and cation exchange flux, but showed a positive correlation with available iron. Furthermore, metabolomic analysis revealed that the metabolic pathways related to the synthesis of various antibacterial compounds were significantly enriched in the healthy group. The correlation analysis results indicate that the bacterial genera Polycyclovorans, Lysobacter, Pseudomonas, and Nitrosospira may participate in the synthesis of antibacterial compounds. Collectively, our findings contribute to a more in-depth understanding of disease resistance mechanisms within healthy microbial communities and provide a theoretical foundation for the development of targeted strategies using beneficial microorganisms to suppress disease occurrence

    High Fat Diet Induces Formation of Spontaneous Liposarcoma in Mouse Adipose Tissue with Overexpression of Interleukin 22

    Get PDF
    Interleukin 22 (IL-22) is a T-cell secreted cytokine that modulates inflammatory response in nonhematopoietic tissues such as epithelium and liver. The function of IL-22 in adipose tissue is currently unknown. We generated a transgenic mouse model with overexpression of IL-22 specifically in adipose tissue. The IL-22 transgenic mice had no apparent changes in obesity and insulin resistance after feeding with high fat diet (HFD). Unexpectedly, all the IL-22 transgenic mice fed with HFD for four months developed spontaneous tumors in epididymal adipose tissue. Histological analysis indicated that the tumors were well-differentiated liposarcomas with infiltration of inflammatory cells. IL-22 overexpression promotes production of inflammatory cytokines such as IL-1β and IL-10 and stimulates ERK phosphorylation in adipose tissue. Furthermore, IL-22 treatment in differentiated 3T3-L1 adipocytes could induce IL-1β and IL-10 expression, together with stimulation of ERK phosphorylation. Taken together, our study not only established a novel mouse model with spontaneous liposarcoma, but also revealed that IL-22 overexpression may collaborate with diet-induced obesity to impact on tumor development in mouse

    Enhanced heating rate of black carbon above planetary boundary layer over megacities in summertime

    Get PDF
    The fast development of a secondary aerosol layer was observed over megacities in eastern Asia during summertime. Within three hours, from midday to early afternoon, the contribution of secondary aerosols above the planetary boundary layer (PBL) increased by a factor of 3-5, and the coatings on the black carbon (BC) also increased and enhanced its absorption efficiency by 50%. This tended to result from the intensive actinic flux received above the PBL which promoted the photochemical reactions. The absorption of BC could be further amplified by the strong reflection of solar radiation over the cloud top across the PBL. This enhanced heating effect of BC introduced by combined processes (intensive solar radiation, secondary formation and cloud reflection) may considerably increase the temperature inversion above the PBL. This mechanism should be considered when evaluating the radiative impact of BC, especially for the polluted regions receiving strong solar radiation
    • …
    corecore