2,402 research outputs found

    Near-wall velocity of suspended particles in microchannel flow

    Get PDF
    This contribution investigates the characteristic reduction of the particle velocity with respect to the velocity profile of a pure liquid (water) in a pressure driven flow (PDF). It is shown by simulations and experiments that particles are slowed down once their local perturbation "cloud" of the velocity field hits the wall. We show that this effect scales with the ratio of the distance of sphere's surface from the wall, a, and the radius, a, of the sphere, i.e. delta/a

    Electron-Phonon Coupling in Boron-Doped Diamond Superconductor

    Full text link
    The electronic structure, lattice dynamics, and electron-phonon coupling of the boron-doped diamond are investigated using the density functional supercell method. Our results indicate the boron-doped diamond is a phonon mediated superconductor, con rming previous theoretical conclusions deduced from the calculations employing the virtual crystal approximation. We show that the optical phonon modes involving B vibrations play an important role in the electron-phonon coupling. Di erent from previous theoretical results, our calculated electron-phonon coupling constant is 0.39 and the estimated superconducting transition temperature Tc is 4.4 K for the boron doped diamond with 2.78% boron content using the Coulomb pseudopotential \mu*= 0.10, in excellent agreement with the experimental result.Comment: 11 pages, 4 figures, Accepted by PR

    Quantum Anomalous Hall Effect in Graphene Proximity Coupled to an Antiferromagnetic Insulator

    Full text link
    We propose realizing the quantum anomalous Hall effect by proximity coupling graphene to an antiferromagnetic insulator that provides both broken time-reversal symmetry and spin-orbit coupling. We illustrate our idea by performing ab initio calculations for graphene adsorbed on the (111) surface of BiFeO3. In this case, we find that the proximity-induced exchange field in graphene is about 70 meV, and that a topologically nontrivial band gap is opened by Rashba spin-orbit coupling. The size of the gap depends on the separation between the graphene and the thin film substrate, which can be tuned experimentally by applying external pressure.Comment: 5pages, 5 figure

    A Silicon Surface Code Architecture Resilient Against Leakage Errors

    Get PDF
    Spin qubits in silicon quantum dots are one of the most promising building blocks for large scale quantum computers thanks to their high qubit density and compatibility with the existing semiconductor technologies. High fidelity single-qubit gates exceeding the threshold of error correction codes like the surface code have been demonstrated, while two-qubit gates have reached 98\% fidelity and are improving rapidly. However, there are other types of error --- such as charge leakage and propagation --- that may occur in quantum dot arrays and which cannot be corrected by quantum error correction codes, making them potentially damaging even when their probability is small. We propose a surface code architecture for silicon quantum dot spin qubits that is robust against leakage errors by incorporating multi-electron mediator dots. Charge leakage in the qubit dots is transferred to the mediator dots via charge relaxation processes and then removed using charge reservoirs attached to the mediators. A stabiliser-check cycle, optimised for our hardware, then removes the correlations between the residual physical errors. Through simulations we obtain the surface code threshold for the charge leakage errors and show that in our architecture the damage due to charge leakage errors is reduced to a similar level to that of the usual depolarising gate noise. Spin leakage errors in our architecture are constrained to only ancilla qubits and can be removed during quantum error correction via reinitialisations of ancillae, which ensure the robustness of our architecture against spin leakage as well. Our use of an elongated mediator dots creates spaces throughout the quantum dot array for charge reservoirs, measuring devices and control gates, providing the scalability in the design

    Memento Mori: The development and validation of the Death Reflection Scale

    Get PDF
    Despite its potential for advancing organizational behavior (OB) research, the topic of death awareness has been vastly understudied. Moreover, research on death awareness has predominantly focused on the anxiety‐provoking aspect of death‐related cognitions, thus overlooking the positive aspect of death awareness, death reflection. This gap is exacerbated by the lack of a valid research instrument to measure death reflection. To address this issue, we offer a systematic conceptualization of death reflection, develop the Death Reflection Scale, and assess its psychometric properties across four studies. Further, using a sample of 268 firefighters, we examine whether death reflection buffers the detrimental impact of mortality cues at work on employee well‐being and safety performance. Results provide strong support for the psychometric properties of the Death Reflection Scale. Further, moderation analysis indicates death reflection weakens the negative effect of mortality cues on firefighters' safety performance. Overall, these findings suggest the newly developed Death Reflection Scale will prove useful in future research on death‐related cognitions

    Cross-domain Adaptation with Discrepancy Minimization for Text-independent Forensic Speaker Verification

    Full text link
    Forensic audio analysis for speaker verification offers unique challenges due to location/scenario uncertainty and diversity mismatch between reference and naturalistic field recordings. The lack of real naturalistic forensic audio corpora with ground-truth speaker identity represents a major challenge in this field. It is also difficult to directly employ small-scale domain-specific data to train complex neural network architectures due to domain mismatch and loss in performance. Alternatively, cross-domain speaker verification for multiple acoustic environments is a challenging task which could advance research in audio forensics. In this study, we introduce a CRSS-Forensics audio dataset collected in multiple acoustic environments. We pre-train a CNN-based network using the VoxCeleb data, followed by an approach which fine-tunes part of the high-level network layers with clean speech from CRSS-Forensics. Based on this fine-tuned model, we align domain-specific distributions in the embedding space with the discrepancy loss and maximum mean discrepancy (MMD). This maintains effective performance on the clean set, while simultaneously generalizes the model to other acoustic domains. From the results, we demonstrate that diverse acoustic environments affect the speaker verification performance, and that our proposed approach of cross-domain adaptation can significantly improve the results in this scenario.Comment: To appear in INTERSPEECH 202

    The finite-width Laplace sum rules for 0++0^{++} scalar glueball in instanton liquid model

    Full text link
    In the framework of a semi-classical expansion for quantum chromodynamics in the instanton liquid background, the correlation function of the 0++0^{++} scalar glueball current is given. Besides the pure classical and quantum contributions, the contributions arising from the interactions between the classical instanton fields and quantum gluons are taken into account as well. Instead of the usual zero-width approximation for the resonance, the Brite-Wigner form for the spectral function of the finite-width resonance is adopted. The family of the Laplace sum rules for the scalar glueball in quantum chromodynamics with and without light quarks are studed. A consistency between the subtracted and unsubtracted sum rules are very well justified, and the values of the mass, decay width, and the coupling to the corresponding current for the 0++0^{++} resonance in which the glueball fraction is dominant, are obtained.Comment: 6 figure
    corecore