62 research outputs found

    Metabolic insights from a GHSR-A203E mutant mouse model

    Get PDF
    Objective: Binding of ghrelin to its receptor, growth hormone secretagogue receptor (GHSR), stimulates GH release, induces eating, and increases blood glucose. These processes may also be influenced by constitutive (ghrelin-independent) GHSR activity, as suggested by findings in short people with naturally occurring GHSR-A204E mutations and reduced food intake and blood glucose in rodents administered GHSR inverse agonists, both of which impair constitutive GHSR activity. In this study, we aimed to more fully determine the physiologic relevance of constitutive GHSR activity. Methods: We generated mice with a GHSR mutation that replaces alanine at position 203 with glutamate (GHSR-A203E), which corresponds to the previously described human GHSR-A204E mutation, and used them to conduct ex vivo neuronal electrophysiology and in vivo metabolic assessments. We also measured signaling within COS-7 and HEK293T cells transfected with wild-type GHSR (GHSR-WT) or GHSR-A203E constructs. Results: In COS-7 cells, GHSR-A203E resulted in lower baseline IP3 accumulation than GHSR-WT; ghrelin-induced IP3 accumulation was observed in both constructs. In HEK293T cells co-transfected with voltage-gated CaV2.2 calcium channel complex, GHSR-A203E had no effect on basal CaV2.2 current density while GHSR-WT did; both GHSR-A203E and GHSR-WT inhibited CaV2.2 current in the presence of ghrelin. In cultured hypothalamic neurons from GHSR-A203E and GHSR-deficient mice, native calcium currents were greater than those in neurons from wild-type mice; ghrelin inhibited calcium currents in cultured hypothalamic neurons from both GHSR-A203E and wild-type mice. In brain slices, resting membrane potentials of arcuate NPY neurons from GHSR-A203E mice were hyperpolarized compared to those from wild-type mice; the same percentage of arcuate NPY neurons from GHSR-A203E and wild-type mice depolarized upon ghrelin exposure. The GHSR-A203E mutation did not significantly affect body weight, body length, or femur length in the first ∼6 months of life, yet these parameters were lower in GHSR-A203E mice after 1 year of age. During a 7-d 60% caloric restriction regimen, GHSR-A203E mice lacked the usual marked rise in plasma GH and demonstrated an exaggerated drop in blood glucose. Administered ghrelin also exhibited reduced orexigenic and GH secretagogue efficacies in GHSR-A203E mice. Conclusions: Our data suggest that the A203E mutation ablates constitutive GHSR activity and that constitutive GHSR activity contributes to the native depolarizing conductance of GHSR-expressing arcuate NPY neurons. Although the A203E mutation does not block ghrelin-evoked signaling as assessed using in vitro and ex vivo models, GHSR-A203E mice lack the usual acute food intake response to administered ghrelin in vivo. The GHSR-A203E mutation also blunts GH release, and in aged mice leads to reduced body length and femur length, which are consistent with the short stature of human carriers of the GHSR-A204E mutation.Fil: Torz, Lola J.. Universidad de Copenhagen; DinamarcaFil: Osborne Lawrence, Sherri. Ut Southwestern Medical Center; Estados UnidosFil: Rodriguez, Juan. Ut Southwestern Medical Center; Estados UnidosFil: He, Zhenyan. Ut Southwestern Medical Center; Estados UnidosFil: Cornejo, María Paula. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Multidisciplinario de Biología Celular. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Multidisciplinario de Biología Celular. Universidad Nacional de La Plata. Instituto Multidisciplinario de Biología Celular; ArgentinaFil: Mustafá, Emilio Román. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Multidisciplinario de Biología Celular. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Multidisciplinario de Biología Celular. Universidad Nacional de La Plata. Instituto Multidisciplinario de Biología Celular; ArgentinaFil: Jin, Chunyu. Universidad de Copenhagen; DinamarcaFil: Petersen, Natalia. Universidad de Copenhagen; DinamarcaFil: Hedegaard, Morten A.. Universidad de Copenhagen; DinamarcaFil: Nybo, Maja. Universidad de Copenhagen; DinamarcaFil: Martínez Damonte, Valentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Multidisciplinario de Biología Celular. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Multidisciplinario de Biología Celular. Universidad Nacional de La Plata. Instituto Multidisciplinario de Biología Celular; ArgentinaFil: Metzger, Nathan P.. Ut Southwestern Medical Center; Estados UnidosFil: Mani, Bharath K.. Ut Southwestern Medical Center; Estados UnidosFil: Williams, Kevin W.. Ut Southwestern Medical Center; Estados UnidosFil: Raingo, Jesica. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Multidisciplinario de Biología Celular. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Multidisciplinario de Biología Celular. Universidad Nacional de La Plata. Instituto Multidisciplinario de Biología Celular; ArgentinaFil: Perello, Mario. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Multidisciplinario de Biología Celular. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Multidisciplinario de Biología Celular. Universidad Nacional de La Plata. Instituto Multidisciplinario de Biología Celular; ArgentinaFil: Holst, Birgitte. Universidad de Copenhagen; DinamarcaFil: Zigman, Jeffrey M.. Ut Southwestern Medical Center; Estados Unido

    Sensitivity of Vegetation Productivity to Extreme Droughts across the Yunnan Plateau, China

    No full text
    Extreme drought has negative impacts on the health of vegetation and the stability of ecosystems. In this study, the CASA model was employed to estimate the net primary productivity of vegetation over the Yunnan Plateau. The time-lag effects on vegetation were observed within a 0–6 month period of extreme droughts using the Pearson correlation coefficient. The resistance of vegetation during extreme droughts was quantified, and the recovery capability of vegetation following these events was analyzed using the ARIMA model. Moreover, the study investigated the response of vegetation to extreme droughts across diverse altitudinal gradients. The results showed that: (1) This round of extreme drought led to a decrease in the NPP of vegetation in the Yunnan Plateau. (2) Vegetation exhibits a 1–3-month lag period in response to extreme drought, with forests showing slower responses than grasslands and shrubs and higher resistance to the drought. Except for agricultural vegetation, most other vegetation types are able to recover their productivity within a year. (3) Vegetation above 3000 m is less susceptible to the impacts of extreme drought. With increasing elevation, forests exhibit an earlier lag period in response to extreme drought and an increase in resistance, but lower elevation vegetation demonstrates better recovery from extreme drought events. Shrub vegetation shows the highest resistance at elevations between 3000–4000 m, and shrubs at middle to high elevations have better recovery capacity than those at low elevations. Grassland vegetation exhibits increased resistance to extreme drought with higher elevation and shows better recovery. Agricultural vegetation demonstrates higher resistance at middle to high elevations, with no significant elevation differences in recovery capacity. Extreme drought events not only have a lag effect on the vegetation ecosystem, but also affect its stability and resilience to future drought events. To adapt to climate change, future research should emphasize the role of small-scale climate in vegetation’s response to drought

    The complete plastome and phylogenetic analysis of Rhoiptelea chiliantha (Juglandaceae)

    No full text
    The complete plastome of Rhoiptelea chiliantha was sequenced and assembled in this study. The circular plastome of R. chiliantha is 161,702 bp in size, which contains a large single-copy region (LSC, 90,447 bp), a short single-copy region (SSC, 19,081 bp) and two inverted repeat sequences (IRs, 26,087 bp, each). It is totally comprised of 133 genes, including 88 protein-coding genes, eight ribosomal RNA, and 37 transfer RNA. The phylogenetic analysis shows that R. chiliantha is sister to the clade including remaining Juglandaceae species
    corecore