11 research outputs found

    A Study of Quality of Service Communication for High-Speed Packet-Switching Computer Sub-Networks

    Get PDF
    In this thesis, we analyze various factors that affect quality of service (QoS) communication in high-speed, packet-switching sub-networks. We hypothesize that sub-network-wide bandwidth reservation and guaranteed CPU processing power at endpoint systems for handling data traffic are indispensable to achieving hard end-to-end quality of service. Different bandwidth reservation strategies, traffic characterization schemes, and scheduling algorithms affect the network resources and CPU usage as well as the extent that QoS can be achieved. In order to analyze those factors, we design and implement a communication layer. Our experimental analysis supports our research hypothesis. The Resource ReSerVation Protocol (RSVP) is designed to realize resource reservation. Our analysis of RSVP shows that using RSVP solely is insufficient to provide hard end-to-end quality of service in a high-speed sub-network. Analysis of the IEEE 802.lp protocol also supports the research hypothesis

    GWAS and co-expression network combination uncovers multigenes with close linkage effects on the oleic acid content accumulation in Brassica napus

    Get PDF
    Background: Strong artificial and natural selection causes the formation of highly conserved haplotypes that harbor agronomically important genes. GWAS combination with haplotype analysis has evolved as an effective method to dissect the genetic architecture of complex traits in crop species. Results: We used the 60 K Brassica Infinium SNP array to perform a genome-wide analysis of haplotype blocks associated with oleic acid (C18:1) in rapeseed. Six haplotype regions were identified as significantly associated with oleic acid (C18:1) that mapped to chromosomes A02, A07, A08, C01, C02, and C03. Additionally, whole-genome sequencing of 50 rapeseed accessions revealed three genes (BnmtACP2-A02, BnABCI13-A02 and BnECI1-A02) in the A02 chromosome haplotype region and two genes (BnFAD8-C02 and BnSDP1-C02) in the C02 chromosome haplotype region that were closely linked to oleic acid content phenotypic variation. Moreover, the co-expression network analysis uncovered candidate genes from these two different haplotype regions with potential regulatory interrelationships with oleic acid content accumulation. Conclusions: Our results suggest that several candidate genes are closely linked, which provides us with an opportunity to develop functional haplotype markers for the improvement of the oleic acid content in rapeseed

    MPI/RT: Design and Implementation of a Real-Time Message Passing Interface

    No full text
    This article describes the ongoing work of real-time message passing interface (MPI) standardization. Real-time MPI (MPI/RT) provides a consistent set of extensions and, in some cases, restrictions to the high-performance computing Message Passing Interface Standard, emphasizing changes that enable and support real-time communication and are supportable on embedded and other real-time systems. Keywords: message-passing, real-time channel, quality of service 1 Introduction The MPI standard [9] defines the user interface and functionality for a wide range of message passing capabilities. MPI strives to provide portability for message-passing code on a variety of platforms ranging from multiple processes on a single workstation (or PC), shared memory platform, distributed shared memory platforms, scalable parallel computers to networks of workstations. The standard specifies a language-independent specification (LIS) as well as C and FORTRAN bindings. While initially targeted for numer..

    A Review: Study on the Enhancement Mechanism of Heat and Moisture Transfer in Deformable Porous Media

    No full text
    The heat and moisture transfer process in deformable porous media commonly exists in material drying, solid waste treatment, bioengineering, and so on. The transfer process is accompanied by deformation of the solid skeleton and pore interface structure, which limits the transfer rate and affects quality. Microwave and ultrasound are the main representatives of reinforcement technology. However, as the moisture decreases, the energy utilization efficiency of microwaves decreases significantly. Based on the experimental and theoretical methods, the enhancement mechanism of ultrasound on the process is studied, which provides guidance for the wide application of ultrasonic enhancement. With the increase in ultrasound power, the pore area and the moisture effective diffusion coefficient gradually increase. A macroscope mathematical model for ultrasonic-coupled thermal-hydro-mechanical modeling is developed, and the results show that ultrasound increases the temperature gradient within material, resulting in higher moisture transmission rates with an ordered direction, and the alternating expansion and compression process results in smaller macroscopic deformations. Subsequently, the drying kinetic characteristics of typical deformable porous media such as municipal sludge, porous fibers, and activated alumina particles are investigated. The process parameters of the ultrasonic assisted drying system are optimized using the response surface method and artificial neural network model

    MPI/FT TM: Architecture and Taxonomies for Fault-Tolerant, Message-Passing Middleware for Performance-Portable Parallel Computing *Work performed in part with support from NASA under

    No full text
    MPI has proven effective for parallel applications in situations with neither QoS nor fault handling. Emerging environments motivate fault-tolerant MPI middleware. Environments include space-based, wide-area/web/meta computing, and scalable clusters. MPI/FT, the system described here, trades off sufficient MPI fault coverage against acceptable parallel performance, based on mission requirements and constraints. MPI codes are evolved to use MPI/FT features. Non-portable code for event handlers and recovery management is isolated
    corecore