17 research outputs found

    Effects of dietary xylooligosaccharide on growth performance, serum biochemical parameters, antioxidant function, and immunological function of nursery piglets

    No full text
    This study investigated the effects of dietary xylo-oligosaccharide (XOS) on growth performance, serum biochemical parameters, antioxidant function, and immunological function of nursery piglets. In total, three groups including 72 nursery piglets were designed and fed one of three diets: a control basal diet, basal diet supplemented with 0.2% ZnO, or basal diet supplemented with 0.04% XOS, for 28 days. Compared with the control group, the XOS group significantly increased the final body weight and average daily weight gain. No significant differences were found about these parameters between the control and ZnO groups. Compared with the control group, the ZnO group showed no changes in the serum content of total protein (TP), albumin (ALB), albumin:globulin (ALB:GLB), aspartate aminotransferase (AST), alanine aminotransferase (ALT), blood urea nitrogen (BUN), glucose, triglyceride, total cholesterol (TC), or in the serum activity of amylase and alkaline phosphatase. However, in the XOS group, serum glucose content increased and blood urea nitrogen and triglyceride content decreased significantly. Compared with the control group, dietary supplementation with XOS significantly increased the serum activity of total antioxygenic capacity, superoxide dismutase, and catalase and decreased the serum activity of malondialdehyde. At the same time, serum IgG content in XOS group was significantly higher than that in control group. From the current study, supplementation of 0.04% XOS in the diet could improve the antioxidant and immune function of piglets, promotes nitrogen deposition, and accelerates lipid and glucose metabolism, thereby improving piglet growth performanc

    Effects of the Forage Type and Chop Length of Ramie Silage on the Composition of Ruminal Microbiota in Black Goats

    No full text
    The aim of this study was to investigate the effects of the forage type and chop length of ramie (Boehmeria nivea (L.) Gaud.) silage on rumen fermentation and ruminal microbiota in black goats. Sixteen Liuyang black goats (22.35 ± 2.16 kg) were fed with the roughage of corn silage or ramie silage at chop lengths of 1, 2, or 3 cm. The Chao 1 index and the observed number of microbial species differed significantly between the corn and ramie silage groups (p < 0.05); however, Firmicutes (relative proportion: 34.99–56.68%), Bacteroidetes (27.41–47.73%), and Proteobacteria (1.44–3.92%) were the predominant phyla in both groups. The relative abundance of Verrucomicrobia (0.32–0.82%) was lowest for the 2 and 3 cm chop lengths (p < 0.05) and was negatively correlated with rumen pH and propionic acid concentration (p < 0.05), but positively correlated with the ratio of acetic acid to propionic acid (p < 0.05). The ramie silage fermentation quality was highest for the 1 cm chop length, suggesting that moderate chopping produces optimal quality silage

    Polymerization of a new thermo-responsive copolymer with N-vinylcaprolactam and its application in recyclable aqueous two-phase systems with another thermo-responsive polymer

    No full text
    Abstract Background The recovery characteristics of phase-forming polymers are essential for aqueous two-phase systems (ATPS) to recycle in bioseparation engineering. Results A new thermo-responsive copolymer (P VBAm) is suggested based on N-vinylcaprolactam, acrylamide, and butyl methacrylate. Together with another thermo-responsive polymer, poly (N-isopropyl acrylamide) (P N), it has been applied to form a recyclable ATPS. P VBAm and P N were designed to obtain structures and molecular weights allowing a lower critical solution temperature (LCST). By polymerization optimization, both P N and P VBAm were obtained with recoveries 98.5% and 95% above their LCST (i.e., P N 32.5 °C and P VBAm 40.5 °C), respectively, which allows each ATPS phase to be effectively recycled. The recycled ATPS based on P VBAm and P N was applied to the partitioning of vitamin B12. Under optimized conditions (5% PVBAm/3.5 %PN ATPS, in the presence of 0.8 M KCl, pH 4.0), the partition coefficient of vitamin B12 reached a value of 5.81. Conclusion The new ATPS based on the thermo-responsive copolymer P VBAm/P N possessed appropriate recycling characteristics regarding LCST, as well as recovery and phase separation characteristics

    Including ramie (Boehmeria nivea L. Gaud) in the diet of dairy cows: effects on production performance, milk composition, rumen fermentation, and nutrient digestion

    No full text
    This experiment was conducted to examine the effects of substituting mixed silage (fresh ramie: dry rice straw = 80: 20; kg: kg) composed of fresh forage ramie, also known as ‘China grass’, Boehmeria nivea L. Gaud (a nettle native to Asia) and rice straw for corn silage and alfalfa hay on the production performance, milk components, rumen fermentation parameters, and nutrient digestion in dairy cows. Thirty multiparous Chinese Holstein cows (629 ± 59.2 kg of BW, 25 ± 4.7 kg of milk yield, and 100 ± 18 DIM; mean ± SD) were randomly divided into three groups. The experimental treatments containing three diets, each consisting of differing proportions of mixed silage (0%, 10%, and 20%, designated as CON, MS1, and MS2, respectively) as a substitution for corn silage and alfalfa hay. There were no effects of mixed silage diets on dry matter intake (DMI), 3.5% fat-corrected milk (FCM) yield, milk protein percentage, milk somatic cell count, and milk urea nitrogen (MUN), but linearly increased total solids (p = .03) and milk fat percentage (p = .001) in cows fed the MS1 and MS2 diets. Feeding mixed silage diets linearly reduced milk yield (p = .01) and milk lactose percentage (p = .01), and had linearly increased rumen pH values (p = .01). There were no observable differences in other rumen fermentation parameters between the mixed silage and control diets. Mixed silage diets exhibited increased DM digestibility (linearly, p = .04; quadratically, p = .017) and linearly decreased crude protein digestibility (p = .05), but we observed no differences in the apparent total-tract digestibility of EE, NDF, and ADF between the control and mixed silage diets. In conclusion, using ramie and rice straw mixed silage proved beneficial by increasing milk fat percentage, milk solids, and DM digestibility, ramie could be used as a potential forage resource in dairy cow diets.Highlights We tested the effects of substituting alfalfa hay and corn silage with mixed silage composed of fresh forage ramie and rice straw on dairy cows Mixed silage diets had no effect on dry matter intake (DMI) Mixed silage diets reduced milk yield and milk lactose percentag

    Dynamic Profiles of Fermentation Quality and Microbial Community of Kudzu (<i>Pueraria lobata</i>) Ensiled with Sucrose

    No full text
    The study aimed to investigate the effects of different levels of added sucrose on the fermentation quality and microbial community of kudzu (Pueraria lobata) silage. The three sucrose supplementation levels utilized were 0, 0.5, and 1.0%, and kudzu was silaged for 15, 30, and 60 days. Sucrose supplementation significantly decreased the pH levels, acid detergent fiber, ammonia nitrogen content, and relative abundance of Pantoea in the silages (p Klebsiella, Enterobacteriaceae, Lactobacillus, and Weissella, and the relative abundance of Enterobacteriaceae was lower in the 1% sucrose-supplemented group than in the control group. These results showed that sucrose addition could improve the quality of kudzu silage and increase its beneficial microbial community

    Diarrhea induced by insufficient fat absorption in weaned piglets: Causes and nutrition regulation

    No full text
    Fat is one of the three macronutrients and a significant energy source for piglets. It plays a positive role in maintaining intestinal health and improving production performance. During the weaning period, physiological, stress and diet-related factors influence the absorption of fat in piglets, leading to damage to the intestinal barrier, diarrhea and even death. Signaling pathways, such as fatty acid translocase (CD36), pregnane X receptor (PXR), and AMP-dependent protein kinase (AMPK), are responsible for regulating intestinal fat uptake and maintaining intestinal barrier function. Therefore, this review mainly elaborates on the reasons for diarrhea induced by insufficient fat absorption and related signaling pathways in weaned-piglets, with an emphasis on the intestinal fat absorption disorder. Moreover, we focus on introducing nutritional strategies that can promote intestinal fat absorption in piglets with insufficient fat absorption-related diarrhea, such as lipase, amino acids, and probiotics

    Physicochemical properties and micro-interaction between micro-nanoparticles and anterior corneal multilayer biological interface film for improving drug delivery efficacy: the transformation of tear film turnover mode

    No full text
    AbstractRecently, various novel drug delivery systems have been developed to overcome ocular barriers in order to improve drug efficacy. We have previously reported that montmorillonite (MT) microspheres (MPs) and solid lipid nanoparticles (SLNs) loaded with the anti-glaucoma drug betaxolol hydrochloride (BHC) exhibited sustained drug release and thus intraocular pressure (IOP) lowering effects. Here, we investigated the effect of physicochemical particle parameters on the micro-interactions with tear film mucins and corneal epithelial cells. Results showed that the MT-BHC SLNs and MT-BHC MPs eye drops significantly prolonged the precorneal retention time due to their higher viscosity and lower surface tension and contact angle compared with the BHC solution, with MT-BHC MPs exhibiting the longest retention due to their stronger hydrophobic surface. The cumulative release of MT-BHC SLNs and MT-BHC MPs was up to 87.78% and 80.43% after 12 h, respectively. Tear elimination pharmacokinetics study further confirmed that the prolonged precorneal retention time of the formulations was due to the micro-interaction between the positively charged formulations and the negatively charged tear film mucins. Moreover, the area under the IOP reduction curve (AUC) of MT-BHC SLNs and MT-BHC MPs was 1.4 and 2.5 times that of the BHC solution. Accordingly, the MT-BHC MPs also exhibit the most consistent and long-lasting IOP-lowering effect. Ocular irritation experiments showed no significant toxicity of either. Taken together, MT MPs may have the potential for more effective glaucoma treatment
    corecore