23 research outputs found

    DUFormer: Solving Power Line Detection Task in Aerial Images using Semantic Segmentation

    Full text link
    Unmanned aerial vehicles (UAVs) are frequently used for inspecting power lines and capturing high-resolution aerial images. However, detecting power lines in aerial images is difficult,as the foreground data(i.e, power lines) is small and the background information is abundant.To tackle this problem, we introduce DUFormer, a semantic segmentation algorithm explicitly designed to detect power lines in aerial images. We presuppose that it is advantageous to train an efficient Transformer model with sufficient feature extraction using a convolutional neural network(CNN) with a strong inductive bias.With this goal in mind, we introduce a heavy token encoder that performs overlapping feature remodeling and tokenization. The encoder comprises a pyramid CNN feature extraction module and a power line feature enhancement module.After successful local feature extraction for power lines, feature fusion is conducted.Then,the Transformer block is used for global modeling. The final segmentation result is achieved by amalgamating local and global features in the decode head.Moreover, we demonstrate the importance of the joint multi-weight loss function in power line segmentation. Our experimental results show that our proposed method outperforms all state-of-the-art methods in power line segmentation on the publicly accessible TTPLA dataset

    Screening high potassium efficiency potato genotypes and physiological responses at different potassium levels

    Get PDF
    Potato (Solanum tuberosum L.) growth and production is highly dependent on potassium (K) levels in the soil. Southwest China is the largest potato production region but it has low availability of soil potassium. To assess the genetic variation in K use efficiency, 20 potato genotypes were collected to compare the yield and K content in a pot experiment. Moreover, ‘Huayu-5’ and ‘Zhongshu-19’ were cultivated in five K applications to investigate the K distribution and sucrose in different organs. The results indicated that there were highly significant effects of K, genotype and K×G interactions on tuber yield, plant and tuber K content, plant K uptake efficiency and K harvest index. Cluster analysis classified 20 potato genotypes into four types: DH (high efficiency at low and high K application), LKH (high efficiency at low K application), HKH (high efficiency at high K application) and DL (low efficiency at low and high K application). The potassium distribution percentage in the tubers of the potassium-efficient genotype was higher than that of the potassium-inefficient genotype under low potassium application. The sucrose content in the tuber gently declined as the application of K rose in both cultivars, and that in the tuber of ‘Huayu-5’ was higher than that in ‘Zhongshu-19’. ‘Huayu-5’ reached the highest yield when the potassium application was 159.45 kg ha-1, and ‘Zhongshu-19’ reached the highest yield when the potassium application was 281.4 kg ha-1. This study indicated that genetic variation for K utilization efficiency existed among 20 genotypes, and yield in low K application and relative yield were suitable criteria for screening K utilization efficiency genotypes

    Mechanism of Bazhen decoction in the treatment of colorectal cancer based on network pharmacology, molecular docking, and experimental validation

    Get PDF
    ObjectiveBazhen Decoction (BZD) is a common adjuvant therapy drug for colorectal cancer (CRC), although its anti-tumor mechanism is unknown. This study aims to explore the core components, key targets, and potential mechanisms of BZD treatment for CRC.MethodsThe Traditional Chinese Medicine Systems Pharmacology (TCMSP) was employed to acquire the BZD’s active ingredient and targets. Meanwhile, the Drugbank, Therapeutic Target Database (TTD), DisGeNET, and GeneCards databases were used to retrieve pertinent targets for CRC. The Venn plot was used to obtain intersection targets. Cytoscape software was used to construct an “herb-ingredient-target” network and identify core targets. GO and KEGG pathway enrichment analyses were conducted using R language software. Molecular docking of key ingredients and core targets of drugs was accomplished using PyMol and Autodock Vina software. Cell and animal research confirmed Bazhen Decoction efficacy and mechanism in treating colorectal cancer.ResultsBZD comprises 173 effective active ingredients. Using four databases, 761 targets related to CRC were identified. The intersection of BZD and CRC yielded 98 targets, which were utilized to construct the “herb-ingredient-target” network. The four key effector components with the most targets were quercetin, kaempferol, licochalcone A, and naringenin. Protein-protein interaction (PPI) analysis revealed that the core targets of BZD in treating CRC were AKT1, MYC, CASP3, ESR1, EGFR, HIF-1A, VEGFR, JUN, INS, and STAT3. The findings from molecular docking suggest that the core ingredient exhibits favorable binding potential with the core target. Furthermore, the GO and KEGG enrichment analysis demonstrates that BZD can modulate multiple signaling pathways related to CRC, like the T cell receptor, PI3K-Akt, apoptosis, P53, and VEGF signaling pathway. In vitro, studies have shown that BZD dose-dependently inhibits colon cancer cell growth and invasion and promotes apoptosis. Animal experiments have shown that BZD treatment can reverse abnormal expression of PI3K, AKT, MYC, EGFR, HIF-1A, VEGFR, JUN, STAT3, CASP3, and TP53 genes. BZD also increases the ratio of CD4+ T cells to CD8+ T cells in the spleen and tumor tissues, boosting IFN-γ expression, essential for anti-tumor immunity. Furthermore, BZD has the potential to downregulate the PD-1 expression on T cell surfaces, indicating its ability to effectively restore T cell function by inhibiting immune checkpoints. The results of HE staining suggest that BZD exhibits favorable safety profiles.ConclusionBZD treats CRC through multiple components, targets, and metabolic pathways. BZD can reverse the abnormal expression of genes such as PI3K, AKT, MYC, EGFR, HIF-1A, VEGFR, JUN, STAT3, CASP3, and TP53, and suppresses the progression of colorectal cancer by regulating signaling pathways such as PI3K-AKT, P53, and VEGF. Furthermore, BZD can increase the number of T cells and promote T cell activation in tumor-bearing mice, enhancing the immune function against colorectal cancer. Among them, quercetin, kaempferol, licochalcone A, naringenin, and formaronetin are more highly predictive components related to the T cell activation in colorectal cancer mice. This study is of great significance for the development of novel anti-cancer drugs. It highlights the importance of network pharmacology-based approaches in studying complex traditional Chinese medicine formulations

    The Genomes of Oryza sativa: A History of Duplications

    Get PDF
    We report improved whole-genome shotgun sequences for the genomes of indica and japonica rice, both with multimegabase contiguity, or almost 1,000-fold improvement over the drafts of 2002. Tested against a nonredundant collection of 19,079 full-length cDNAs, 97.7% of the genes are aligned, without fragmentation, to the mapped super-scaffolds of one or the other genome. We introduce a gene identification procedure for plants that does not rely on similarity to known genes to remove erroneous predictions resulting from transposable elements. Using the available EST data to adjust for residual errors in the predictions, the estimated gene count is at least 38,000–40,000. Only 2%–3% of the genes are unique to any one subspecies, comparable to the amount of sequence that might still be missing. Despite this lack of variation in gene content, there is enormous variation in the intergenic regions. At least a quarter of the two sequences could not be aligned, and where they could be aligned, single nucleotide polymorphism (SNP) rates varied from as little as 3.0 SNP/kb in the coding regions to 27.6 SNP/kb in the transposable elements. A more inclusive new approach for analyzing duplication history is introduced here. It reveals an ancient whole-genome duplication, a recent segmental duplication on Chromosomes 11 and 12, and massive ongoing individual gene duplications. We find 18 distinct pairs of duplicated segments that cover 65.7% of the genome; 17 of these pairs date back to a common time before the divergence of the grasses. More important, ongoing individual gene duplications provide a never-ending source of raw material for gene genesis and are major contributors to the differences between members of the grass family

    A Primary Support Design for Deep Shaft Construction Based on the Mechanism of Advanced Sequential Geopressure Release

    No full text
    The construction of 1500 m depth shaft in Xincheng Gold Mine, China, faces complex stress conditions such as high geostress (>50 MPa), high ground temperature (>50 °C), high water-pressure (>9 MPa), and highly corrosive. Traditional deep shafts excavated by the sinking and lining method cannot adapt to high geostress problems, such as rock bursts and large deformations, etc., in the deep shaft construction process. To avoid and adjust the high geostress induced the rockburst and large deformations, the mechanism of the advanced sequential geopressure release (ASGR) has been proposed for the ground control in deep shaft construction. In this paper, the safe distance between the concrete lining and the shaft excavation face is determined based on the ASGR mechanism, which can provide the space for geopressure release, and primary support based on rock mass quality and numerical simulation was employed to control the geopressure and deformation. A new support scheme for the deep shaft is proposed, using long bolts to restrain severe deformations, metal mesh, and a double reinforcement bar to improve the induced stress distribution. According to the results, the construction scheme of deep shaft has been improved, and the safe support distance of the proposed scheme is determined to be 12 m, with an interval of three excavation cycles. Compared to the original scheme of shaft lining after excavation, the proposed scheme based on the ASGR mechanism can effectively improve the geopressure release and benefit from controlling the rockburst and large deformation of deep shaft induced by high geostress conditions. The stress distribution in the lining is more uniform, and safety factor of the lining is increased to 2.0, which is benefit the long-term stability of deep shaft

    Photo-Excited Switchable Terahertz Metamaterial Polarization Converter/Absorber

    No full text
    In this paper, a photo-excited switchable terahertz metamaterial (MM) polarization converter/absorber has been presented. The switchable structure comprises an orthogonal double split-ring resonator (ODSRR) and a metallic ground, separated by a dielectric spacer. The gaps of ODSRR are filled with semiconductor photoconductive silicon (Si), whose conductivity can be dynamically tuned by the incident pump beam with different power. From the simulated results, it can be observed that the proposed structure implements a wide polarization-conversion band in 2.01–2.56 THz with the conversion ratio of more than 90% and no pump beam power incident illuminating the structure, whereas two absorption peaks operate at 1.98 THz and 3.24 THz with the absorption rates of 70.5% and 94.2%, respectively, in the case of the maximum pump power. Equivalent circuit models are constructed for absorption states to provide physical insight into their operation. Meanwhile, the surface current distributions are also illustrated to explain the working principle. The simulated results show that this design has the advantage of the switchable performance afforded by semiconductor photoconductive Si, creating a path towards THz imaging, active switcher, etc

    Long non-coding RNA SPRY4-IT1 promotes proliferation and metastasis in nasopharyngeal carcinoma cell

    No full text
    Background Long non-coding RNA SPRY4 intronic transcript 1 (Lnc RNA SPRY4-IT1) was aberrant-expressed in various kinds of cancer. Increasing evidence demonstrated that lnc RNAs involved in tumorigenesis and metastasis. In this study, we aimed to explore the biological role of SPRY4-IT1 on the phenotype of nasopharyngeal carcinoma (NPC) in vitro and in vivo. Methods The expression level of SPRY4-IT1 in NPC cell lines were measured by quantitative real-time polymerase chain reaction (qRT-PCR). Cell Counting Kit-8 (CCK-8) and colony formation assay were used to detect cell proliferation. Wound-healing assay, transwell assay and animal experiment were performed to evaluate the ability of cell migration and metastasis. Cell cycle distribution and apoptosis were determined by flow cytometry. Western blotting and immunofluorescence were employed to identify protein expression. Results SPRY4-IT1 was significantly up-regulated in several NPC cell lines (6-10B, CNE-2, and HONE-1) compared with human immortalized nasopharyngeal epithelial cell (NP69). Silencing of SPRY4-IT1 inhibited proliferation, migration, and metastasis, and induced significant G2/M phase arrest and apoptosis. Western blotting showed that the expression levels of cell cycle-related proteins (cyclin B1, cdc2 and p-cdc2) were down-regulated and apoptosis-associated proteins (PARP, cleaved PARP and cleaved caspase-3) were up-regulated after knockdown of SPRY4-IT1. The expression level of E-cadherin was increased and the expression of Vimentin, Snail and Twist1 were decreased after the SPRY4-IT1 knockdown. Conclusion lncRNA SPRY4-IT1 played a significant role in NPC proliferation, migration and metastasis, suggesting that SPRY4-IT1 might be a potential therapeutic target for the treatment of NPC

    Research on oil displacement mechanism in conglomerate using CT scanning method

    No full text
    Taking the conglomerate from Xinjiang Oilfield as study object, the porosity distribution characteristics of the conglomerate were analyzed with CT scanning; through the online monitoring of the water and polymer flooding process in a conglomerate core using an CT scanning system, the saturation profile along the core and the CT reconstructed images of core section during the displacing process were obtained; oil displacement mechanism was analyzed according to a new characterization parameter, “oil saturation frequency distribution”. The results show that the conglomerate has strong heterogeneity, resulting in “dominant channels”, and in turn ineffective water circulation and low water flooding oil recovery, moreover, the oil in high oil saturation area is produced first. In polymer flooding, the oil in high and medium oil saturation areas can be produced but the oil in low oil saturation areas still cannot be produced. Oil produced in the subsequent water flooding is still mainly from the high oil saturation areas. For conglomerate reservoirs, previous water flooding should reach as high water cut as possible so as to strengthen the slug effect of the polymer. Meanwhile the injection volume of polymer should be reduced, and a subsequent water flooding should be used to push the polymer slug to produce oil. Key words: conglomerate, CT scanning, water flooding, polymer flooding, oil saturation, profile along the core, frequency distributio

    Application of Grafting Method in Resistance Identification of Sweet Potato Virus Disease and Resistance Evaluation of Elite Sweet Potato [<i>Ipomoea batatas</i> (L.) Lam] Varieties

    No full text
    Sweet potato virus disease (SPVD) is one of the main virus diseases in sweet potato [Ipomoea batatas (L.) Lam] that seriously affects the yield of sweet potato. Therefore, the establishment of a simple, rapid and effective method to detect SPVD is of great significance for the early warning and prevention of this disease. In this study, the experiment was carried out in two years to compare the grafting method and side grafting method for three sweet potato varieties, and the optimal grafting method was selected. After grafting with seedlings infected with SPVD, the symptomatic diagnosis and serological detection were performed in 86 host varieties, and the differences in SPVD resistance were determined by fluorescence quantitative PCR (qRT-PCR) and nitrocellulose membrane enzyme-linked immunosorbent assay (NCM-ELISA). The results showed that the survival rate of grafting by insertion method was significantly higher than that by side grafting method, and the disease resistance of different varieties to sweet potato virus disease was tested. The detection method established in this study can provide theoretical basis for identification and screening of resistant sweet potato varieties
    corecore