85 research outputs found

    Study on the mixing performance of static mixers in selective catalytic reduction (SCR) systems

    Get PDF
    Selective catalytic reduction (SCR) is a promising technique for reducing nitrogen oxide (NOx) emissions from diesel engines. Static mixers are widely used in SCR systems before reactors to promote the mixing of ammonia and exhaust streams. This work aims to investigate the effects of the location of static mixers and the volume ratio of two species on mixing quality using the computational fluid dynamics (CFD) method. The simulation results show that a more homogenous ammonia distribution can be achieved at the exit of the pipe if static mixers are placed close to the ammonia injection point or if more ammonia is injected. Another phenomenon found in the study is that the mixing performance of an identical static mixer may behave discrepantly under different flow conditions if using B and C as the evaluating indexes for mixing homogenization

    Experimental Study on Flexural Capacity of Reinforced Concrete Beam after Collision

    Get PDF

    Genomic surveillance indicates clonal replacement of hypervirulent Klebsiella pneumoniae ST881 and ST29 lineage strains in vivo

    Get PDF
    The emergence of hypervirulent Klebsiella pneumoniae (hvKp) poses a significant public health threat, particularly regarding its carriage in the healthy population. However, the genomic epidemiological characteristics and population dynamics of hvKp within a single patient across distinct infection episodes remain largely unknown. This study aimed to investigate the clonal replacement of hvKp K2-ST881 and K54-ST29 lineage strains in a single patient experiencing multiple-site infections during two independent episodes. Two strains, designated EDhvKp-1 and EDhvKp-2, were obtained from blood and cerebrospinal fluid during the first admission, and the strain isolated from blood on the second admission was named EDhvKp-3. Whole-genome sequencing, utilizing both short-read Illumina and long-read Oxford Nanopore platforms, was conducted. In silico multilocus sequence typing (MLST), identification of antimicrobial resistance and virulence genes, and the phylogenetic relationship between our strains and other K. pneumoniae ST881 and ST29 genomes retrieved from the public database were performed. Virulence potentials were assessed through a mouse lethality assay. Our study indicated that the strains were highly susceptible to multiple antimicrobial agents. Plasmid sequence analysis confirmed that both virulence plasmids, pEDhvKp-1 (166,008 bp) and pEDhvKp-3 (210,948 bp), belonged to IncFIB type. Multiple virulence genes, including rmpA, rmpA2, rmpC, rmpD, iroBCDN, iucABCD, and iutA, were identified. EDhvKp-1 and EDhvKp-2 showed the closest relationship to strain 502 (differing by 51 SNPs), while EDhvKp-3 exhibited 69 SNPs differences compared to strain TAKPN-1, which all recovered from Chinese patients in 2020. In the mouse infection experiment, both ST881 EDhvKp-1 and ST29 EDhvKp-3 displayed similar virulence traits, causing 90 and 100% of the mice to die within 72 h after intraperitoneal infection, respectively. Our study expands the spectrum of hvKp lineages and highlights genomic alterations associated with clonal switching between two distinct lineages of hvKP that successively replaced each other in vivo. The development of novel strategies for the surveillance, diagnosis, and treatment of high-risk hvKp is urgently needed

    Molecular Composition of Oxygenated Organic Molecules and Their Contributions to Organic Aerosol in Beijing

    Get PDF
    The understanding at a molecular level of ambient secondary organic aerosol (SOA) formation is hampered by poorly constrained formation mechanisms and insufficient analytical methods. Especially in developing countries, SOA related haze is a great concern due to its significant effects on climate and human health. We present simultaneous measurements of gas-phase volatile organic compounds (VOCs), oxygenated organic molecules (OOMs), and particle-phase SOA in Beijing. We show that condensation of the measured OOMs explains 26-39% of the organic aerosol mass growth, with the contribution of OOMs to SOA enhanced during severe haze episodes. Our novel results provide a quantitative molecular connection from anthropogenic emissions to condensable organic oxidation product vapors, their concentration in particle-phase SOA, and ultimately to haze formation.Peer reviewe

    Construction and effectiveness evaluation of a knowledge-based infectious disease monitoring and decision support system

    No full text
    Abstract To improve the hospital's ability to proactively detect infectious diseases, a knowledge-based infectious disease monitoring and decision support system was established based on real medical records and knowledge rules. The effectiveness of the system was evaluated using interrupted time series analysis. In the system, a monitoring and alert rule library for infectious diseases was generated by combining infectious disease diagnosis guidelines with literature and a real medical record knowledge map. The system was integrated with the electronic medical record system, and doctors were provided with various types of real-time warning prompts when writing medical records. The effectiveness of the system's alerts was analyzed from the perspectives of false positive rates, rule accuracy, alert effectiveness, and missed case rates using interrupted time series analysis. Over a period of 12 months, the system analyzed 4,497,091 medical records, triggering a total of 12,027 monitoring alerts. Of these, 98.43% were clinically effective, while 1.56% were invalid alerts, mainly owing to the relatively rough rules generated by the guidelines leading to several false alarms. In addition, the effectiveness of the system's alerts, distribution of diagnosis times, and reporting efficiency of doctors were analyzed. 89.26% of infectious disease cases could be confirmed and reported by doctors within 5 min of receiving the alert, and 77.6% of doctors could complete the filling of 33 items of information within 2 min, which is a reduction in time compared to the past. The timely reminders from the system reduced the rate of missed cases by doctors; the analysis using interrupted time series method showed an average reduction of 4.4037% in the missed-case rate. This study proposed a knowledge-based infectious disease decision support system based on real medical records and knowledge rules, and its effectiveness was verified. The system improved the management of infectious diseases, increased the reliability of decision-making, and reduced the rate of underreporting

    EasyStego: Robust Steganography Based on Quick-Response Barcodes for Crossing Domains

    No full text
    Despite greater attention being paid to sensitive-information leakage in the cyberdomain, the sensitive-information problem of the physical domain remains neglected. Anonymous users can easily access the sensitive information of other users, such as transaction information, health status, and addresses, without any advanced technologies. Ideally, secret messages should be protected not only in the cyberdomain but also in the complex physical domain. However, popular steganography schemes only work in the traditional cyberdomain and are useless when physical distortions of messages are unavoidable. This paper first defines the concept of cross-domain steganography, and then proposes EasyStego, a novel cross-domain steganography scheme. EasyStego is based on the use of QR barcodes as carriers; therefore, it is robust to physical distortions in the complex physical domain. Moreover, EasyStego has a large capacity for embeddable secrets and strong scalability in various scenarios. EasyStego uses an AES encryption algorithm to control the permissions of secret messages, which is more effective in reducing the possibility of sensitive-information leakage. Experiments show that EasyStego has perfect robustness and good efficiency. Compared with the best current steganography scheme based on barcodes, EasyStego has greater steganographic capacity and less impact on barcode data. In robustness tests, EasyStego successfully extracts secret messages at different angles and distances. In the case of adding natural textures and importing quantitative error bits, other related steganography techniques fail, whereas EasyStego can extract secret messages with a success rate of nearly 100%

    Daily reference evapotranspiration prediction for irrigation scheduling decisions based on the hybrid PSO-LSTM model.

    No full text
    The shortage of available water resources and climate change are major factors affecting agricultural irrigation. In order to improve the irrigation water use efficiency, it is necessary to predict the water requirements for crops in advance. Reference evapotranspiration (ETo) is a hypothetical standard reference crop evapotranspiration, many types of artificial intelligence models have been applied to predict ETo; However, there are still few in the literature regarding the application of hybrid models for deep learning model parameters optimization. This paper proposes two hybrid models based on particle swarm optimization (PSO) and long-short-term memory (LSTM) neural network, used to predict ETo at the four climate stations, Shaanxi province, China. These two hybrid models were trained using 40 years of historical data, and the PSO was used to optimize the hyperparameters in the LSTM network. We applied the optimized model to predict the daily ETo in 2019 under different datasets, the result showed that the optimized model has good prediction accuracy. The optimized hybrid models can help farmers and irrigation planners to make plan earlier and precisely, and can provide valuable information to improve tasks such as irrigation planning
    • …
    corecore