55 research outputs found

    Quantifying the Concentration of Glucose, Urea, and Lactic Acid in Mixture by Confocal Raman Microscopy

    Get PDF
    Raman spectroscopy has numerous applications in the field of biology. One such application is the simultaneously measurement of the concentration of multiple biochemical components in low volume aqueous mixtures, for example, a single drop of blood serum. Over twenty years ago, it was shown for the first time that it was possible to estimate the concentration of glucose, urea, and lactic acid in mixture by combining Raman Spectroscopy with Partial Least Squares Regression analysis. This was followed by numerous contributions in the literature designed to increase the number of components and reduce the limits of concentration that could be simultaneously measured using Raman spectroscopy, by developing various optical architectures to maximise the signal to noise ratio. The aim of this paper is to demonstrate the potential of a confocal Raman microscopy system for multicomponent analysis for the case of physiologically relevant mixtures of glucose, urea, and lactic acid

    An innovative multi-modal retinal imaging system for in vivo retinal detection in small animals

    Get PDF
    This paper presents an innovative retinal imaging system tailored for in vivo fundus detection in small animals. This system integrates Scanning Laser Ophthalmoscopy (SLO) and optical Coherence Tomography (OCT) techniques, enabling the simultaneous generation of images from various modalities, including SLO reflectance, SLO fluorescein angiogram, OCT, and OCT angiogram. The existing multi-modal retinal imaging systems generally encounter limitations such as the inability to detect peripheral lesion areas attributed to small Field of View (FOV) design and susceptibility to sample motion due to slow data acquisition speed. To address these challenges, it’s essential to underscore that this proposed system offers a range of notable advantages, including its compact design, the capacity for widefield imaging with a FOV of up to 100°, and a rapid OCT A-scan rate of 250 kHz, notably exceeding the capabilities of pre-existing multi-modal retinal imaging systems. Validation of the system involved imaging the eyes of normal wild-type mice and diseased mice afflicted with retinal detachment and choroidal neovascularization (CNV). The favorable imaging results demonstrate the system’s reliability in identifying retinal lesions in small animals

    Cox-2 Inhibition Protects against Hypoxia/Reoxygenation-Induced Cardiomyocyte Apoptosis via

    Get PDF
    The present study explored the potential causal link between ischemia-driven cyclooxygenase-2 (COX-2) expression and enhanced apoptosis during myocardial ischemia/reperfusion (I/R) by using H9C2 cardiomyocytes and primary rat cardiomyocytes subjected to hypoxia/reoxygenation (H/R). The results showed that H/R resulted in higher COX-2 expression than that of controls, which was prevented by pretreatment with Helenalin (NFκB specific inhibitor). Furthermore, pretreatment with NS398 (COX-2 specific inhibitor) significantly attenuated H/R-induced cell injury [lower lactate dehydrogenase (LDH) leakage and enhanced cell viability] and apoptosis (higher Bcl2 expression and lower level of cleaved caspases-3 and TUNEL-positive cells) in cardiomyocytes. The amelioration of posthypoxic apoptotic cell death was paralleled by significant attenuation of H/R-induced increases in proinflammatory cytokines [interleukin 6 (IL6) and tumor necrosis factor (TNFα)] and reactive oxygen species (ROS) production and by higher protein expression of phosphorylated Akt and inducible nitric oxide synthase (iNOS) and enhanced nitric oxide production. Moreover, the application of LY294002 (Akt-specific inhibitor) or 1400W (iNOS-selective inhibitor) cancelled the cellular protective effects of NS398. Findings from the current study suggest that activation of NFκB during cardiomyocyte H/R induces the expression of COX-2 and that higher COX-2 expression during H/R exacerbates cardiomyocyte H/R injury via mechanisms that involve cross talks among inflammation, ROS, and Akt/iNOS/NO signaling

    Monitoring the Process and Characterizing Symptoms of Suckling Mouse Inoculation Promote Isolating Viruses from Ticks

    Get PDF
    Suckling mouse inoculation is an important method that has been used for years to isolate viruses from ticks; however, this method has usually been briefly described in the literature on a case-by-case basis upon successful isolation rather than providing extensive details. This study describes the procedure from preparation of tick homogenates to identification of virus isolation using the suckling mouse inoculation method. The transient and persistent features were characterized and the incidence of manifestations that developed in the suckling mice, especially in mice from which viruses were isolated, is reported. We identified 22 symptoms that developed in mice, including 13 transient symptoms that recovered by the end of the observation period and 7 persistent symptoms that the mice suffered from throughout the observation period. Persistent symptoms (lateral positioning and dead) and transient symptoms (malaise, emaciation, and difficulty turning over) were the main symptoms based on the high overall incidence. Moreover, we showed that mice from which viruses were isolated had a concentrated period and advanced days of disease onset. This study provides detailed information necessary for better use of suckling mouse inoculation to isolate viruses from ticks, which may benefit optimization of this method to identify, discover, and acquire tick-borne viruses

    Multiuser Channel Estimation for Ultra-Wideband Systems Using up to the Second-Order Statistics

    No full text
    In a pulse-position modulation-based ultra-wideband (UWB) communication system, multiple access is enabled by assigning unique time-hopping sequences to different users. Each user's data information is carried by positions of short pulses which are directly transmitted through an unknown and possibly dense multipath channel. Single-user channel estimation methods have been proposed by maximum likelihood optimization that treats multiple access interference as Gaussian noise. In this paper, multiuser channel estimation methods are proposed based on a pulse-rate discrete-time system model and up to the second-order statistics of the channel outputs. The model can be regarded in a trilinear structure and also resembles a code-division multiple-access (CDMA) system with newly defined hopping-code dependent matrices and inputs for each user. Considering that either the mean or covariance of received signals contains sufficient information for all unknown channels, least squares and covariance matching ideas are successfully applied to estimate all channels blindly. Accordingly, closed-form solutions are derived. Those channel estimates can be used to design typical linear receivers. Performance of each proposed estimator is analyzed and also verified by computer simulations. Corresponding receivers' performance is also studied numerically.</p

    Coherent polarization modulated transmission through MIMO atmospheric optical turbulence channel

    No full text
    An optical signal suffers from irradiance and phase fluctuations when propagating through the free space optical (FSO) turbulence channel, thus resulting in the degradation of the bit error rate (BER) performance. The BER performance can be improved by adopting the multiple-input multiple-output (MIMO) scheme. In this paper, we propose a coherent binary polarization shift keying (BPOLSK) modulation scheme with MIMO employing maximum ratio combining and equal gain combining diversity techniques to mitigate the turbulence effect. The gamma-gamma statistical channel model is adopted for all the turbulence regimes. The BER performance for the proposed BPOLSK-MIMO FSO link is compared with the single-input single-output and ON-OFF-keying systems by means of computer simulation. The optical power gain is investigated and demonstrated under different turbulence regimes for a number of transmitters/receivers

    Outage probability of multihop free space optical communications over Nakagami fading channels

    No full text
    In this paper, the end-to-end outage probability of a multihop free space optical (FSO) communication system over N independent Nakagami fading relay channels are analyzed. We assume that the channel state information-based relays have the knowledge of the channel states in the preceding hops. The Laplace transform of the inverse end-to-end signal-to-noise ratio (SNR) is derived in a closed form. Based on this expression, the outage probability involving N statistically independent, but not necessarily identically distributed (i.n.i.d) Nakagami relay channels is evaluated numerically via the inverse Laplace transform. The results indicate that the outage probability improves as N decreases and/or the arbitrary fading parameter m increases. This is because the probability that any of the cascaded fading channels is in deep fade decreases significantly. Therefore, the smaller N and/or larger m, the better the multihop relay channel

    A Subspace Approach to Blind Multiuser Detection for Ultra-Wideband Communication Systems

    Get PDF
    <p/> <p>Impulse radio-based ultra-wideband (UWB) communication systems allow multiple users to access channels simultaneously by assigning unique time-hopping codes to individual users, while each user's information stream is modulated by pulse-position modulation (PPM). However, transmitted signals undergo fading from a number of propagation paths in a dense multipath environment and meanwhile suffer from multiuser interference (MUI). Although RAKE receiver can be employed to maximally exploit path diversity, it is a single-user receiver. Multiuser receiver can significantly improve detection performance. Each of these receivers requires channel parameters. Existing maximum likelihood channel estimators treat MUI as Gaussian noise. In this paper, we derive a blind subspace channel estimator first and then design linear receivers. Following a channel input/output model that transforms a PPM signal into a sum of seemingly pulse-amplitude modulated signals, a structure similar to a code-division multiple-access (CDMA) system is observed. Code matrices for each user are identified. After considering unique statistical properties of new inputs such as mean and covariance, the model is further transformed to ensure that all signature waveforms lie in the signal subspace and are orthogonal to the noise subspace. Consequently, a subspace technique is applicable to estimate each channel. Then minimum mean square error receivers of two different versions are designed, suitable for both uplink and downlink. Asymptotic performance of both the channel estimator and receivers is studied. Closed-form bit error rate is also derived.</p
    • …
    corecore