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Impulse radio-based ultra-wideband (UWB) communication systems allow multiple users to access channels simultaneously by
assigning unique time-hopping codes to individual users, while each user’s information stream is modulated by pulse-position
modulation (PPM). However, transmitted signals undergo fading from a number of propagation paths in a dense multipath en-
vironment and meanwhile suffer from multiuser interference (MUI). Although RAKE receiver can be employed to maximally
exploit path diversity, it is a single-user receiver. Multiuser receiver can significantly improve detection performance. Each of these
receivers requires channel parameters. Existing maximum likelihood channel estimators treat MUI as Gaussian noise. In this pa-
per, we derive a blind subspace channel estimator first and then design linear receivers. Following a channel input/output model
that transforms a PPM signal into a sum of seemingly pulse-amplitude modulated signals, a structure similar to a code-division
multiple-access (CDMA) system is observed. Code matrices for each user are identified. After considering unique statistical prop-
erties of new inputs such as mean and covariance, the model is further transformed to ensure that all signature waveforms lie in the
signal subspace and are orthogonal to the noise subspace. Consequently, a subspace technique is applicable to estimate each chan-
nel. Then minimum mean square error receivers of two different versions are designed, suitable for both uplink and downlink.
Asymptotic performance of both the channel estimator and receivers is studied. Closed-form bit error rate is also derived.
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1. INTRODUCTION

Research in impulse radio (IR) ultra-wideband (UWB) sys-
tems has lasted for several decades whose interest remains
growing. Beginning with a focus on radar applications in
military networks [1], the topic has spanned over a wide
range of spectrum, such as those in commercial and other
government applications [2, 3, 4]. With recent release of
spectral mask from the Federal Communications Commis-
sion (FCC) [5], communication society has witnessed an in-
creasing interest in recent years [6]. A conventional IR sys-
tem transmits trains of time-hopping (TH) short-duration
pulses with a low duty cycle and uses pulse-position modu-
lation (PPM). Therefore, multipath down-to-path delay dif-
ferentials in nanosecond is resolvable at the receiver, signif-
icantly mitigating multipath distortion and providing path

diversity [7]. With new spectrum allocation and newly aris-
ing imperative demands for high data rates and transmission
range [8], correspondingly advanced techniques need to be
developed tomeet specific requirements. Particular attention
has to be paid to signal detection and receiver implemen-
tation. Concurrent challenges exist in complexity reduction
and performance improvement.

In a UWB system, typically a RAKE receiver is employed
to detect information symbols. It consists of multiple wave-
form correlators [4]. Compared with the optimal receiver,
a RAKE receiver sacrifices performance for low complex-
ity [9]. To fully capture signal energy spread over multiple
paths, the receiver needs to know channel parameters when
the correlation is performed. In a dense multipath wireless
environment, channel information is not known a priori.
Channel parameters can be either measured or estimated.
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However, field test is sensitive to location and time, and not
feasible for an unknown environment in general. Although
maximum likelihood (ML) channel estimation methods [7,
10] provide blind channel estimators, they approximate mul-
tiuser interference (MUI) as a Gaussian process which may
lead to degraded performance. Therefore, blind channel es-
timators with explicit consideration of MUI are more de-
sirable. They are also required by either existing RAKE re-
ceivers or other advanced detectors such as linear multiuser
receivers [11].

In this paper, we first focus on multiple access (MA)
channel estimation based on up to the second-order statis-
tics (SOS) of the received signal in order to construct linear
receivers. Both first-order statistics and SOS can be easily es-
timated from data with low complexity and fast convergence.
SOS have been employed in acquisition of the arrival time of
the first path of UWB channels [12], linear detection of input
symbols when channels are given [11, 13]. First, a UWB sys-
tem is shown to follow a similar model as a direct-sequence
(DS) code-division multiple-access (CDMA) system [11].
Multiple (M corresponding to the modulation level) inputs
originated from the same user information can be regarded
as a rate-M user in a multirate system. Code matrices can be
clearly defined for each user from its unique TH sequence,
like code matrices constructed from spreading codes in a
multirate CDMA system [14]. But they consist of only zeros
and ones, indicating existence of path contributions to the
received signal from a multipath channel. Locations of zeros
and ones vary with users.

However, under previous modeling, received signal
shows nonzero mean due to PPM, different from a typi-
cal CDMA system where zero-mean inputs yield zero-mean
channel output in general. Therefore, for convenience, zero-
mean data is obtained after subtracting the estimated mean
from directly received data. This results in two benefits: (a)
easy application of a subspace concept [14, 15]; and (b) im-
provement of linear detectors’ performance by significantly
reducing amount of MUI. It is shown that newly defined in-
put signals are correlated because they stem from the same
modulation delay. To successfully apply the subspace tech-
nique, further transformation is performed on those sig-
nals in order to properly identify signal subspace. There-
after, aided by unique code matrices and following stan-
dard procedures, channel parameters for the desired user
can be estimated by minimizing projection of the signature
waveform onto the noise subspace of data covariance ma-
trix. Then minimum mean square error (MMSE) receivers
can be built. It may take two different forms: direct ma-
trix inversion (DMI) or subspace receiver [15]. The DMI-
MMSE receiver is based on inversion of the data covariance
matrix which includes the signal subspace and noise sub-
space components. The noise subspace componentsmay am-
plify noise in a practical communication environment. In-
stead, subspace MMSE receiver utilizes only the signal sub-
space components. It shows better performance, in general,
in moderate to high signal-to-noise ratio (SNR). For ei-
ther of them, bit error rate (BER) is derived when M-ary
PPM is adopted by the system. Channel estimation perfor-

mance is evaluated when covariance is estimated from fi-
nite data samples. Meanwhile, signal-to-interference-plus-
noise ratio (SINR) of each receiver is also studied jointly
with channel estimation. Those results can be used to pre-
dict detection performance for given operational condi-
tions.

Some notations following common practice are adopted
throughout the paper. We denote Kronecker product [16] by
⊗, complex conjugate (∗) transpose (T) by (H), inverse by
(−1), pseudo-inverse by (†), trace of a matrix by tr(·), deter-
minant by det(·). Re{·} represents real part, E{·} expecta-
tion, Ia an identitymatrix of degree awhose ith column is de-
noted by ea,i. 1a is a vector of length a with all elements equal
to one. An estimate of a quantity (scalar, vector, or matrix)
is denoted by putting a hat “̂ ” over it, and correspondingly,
the estimation error by preceding the quantity with a δ, such
as X̂ and δX for matrix X, respectively. Meanwhile without
confusing, we also use δ(·) to represent a discrete-time unit
impulse function. A Q function Q(x) = (1/

√
2π)

∫∞
x e−t2/2dt

will be used in analyzing detection performance.
This paper is organized as follows. In Section 2, a

discrete-time UWB system model is first described and then
converted to a linear form similar to a multirate DS/CDMA
model. Subspace-based channel estimation method and
implementation of the MMSE receiver are proposed in
Section 3. Performance of channel estimator and receivers in
terms of channel mean square error (MSE), receivers’ SINR,
and BER are discussed in Section 4. Finally, various simula-
tion examples are provided in Section 5 and conclusions are
drawn in Section 6.

2. DISCRETE-TIME UWB SYSTEM

Assume there are K users simultaneously sharing the spec-
trum in anMA-TH-UWB system. The transmitted baseband
UWB signal from user k can be described by [11]

αk(t) =
√
Pk

∞∑
i=−∞

w
(
t − iT f − ck(i)Tc − τIk(�i/N f �)

)
, (1)

where Pk is the kth user’s transmission power, w(t) is the
baseband monopulse, Tf is the frame duration, Nf is the
number of frames over which an M-ary PPM symbol re-
peats, ck(i) ∈ [0,Nc − 1] is a periodic hopping sequence
with the period equal to one symbol period. Each chip has
duration Tc. Ik(�i/N f �) ∈ [0,M − 1] is the kth user’s in-
formation bearing symbol during the ith frame, τIk(�i/N f �) =
Ik(�i/N f �)σ is the corresponding modulation delay in a mul-
tiple of σ seconds. Assume Tf = NcTc and Tc = Mσ . If we

define wm(t)
∆= w(t − mσ), where m = 0, . . . ,M − 1 and

sk,m(�i/N f �) = δ(Ik(�i/N f �)−m), then (1) may be expressed
by linear modulation in a chip rate as [11]

αk(t) =
√
Pk

∞∑
i=−∞

M−1∑
m=0

uk,m(i)wm
(
t − iTc

)
, (2)
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where the chip index has replaced the frame index in (1),

uk,m(i) = sk,m

(⌊
i

NcN f

⌋)
c̃k(i),

c̃k(i) = δ
(⌊

i

Nc

⌋
Nc + ck

(⌊
i

Nc

⌋)
− i
)
.

(3)

It is clear according to (2) that input uk,m(i) is modulated
by waveform wm(t) at a chip rate. The transmitted signal
αk(t) propagates through a linear channel with impulse re-
sponse ḡk(t). At the receiver, the channel output is first passed
through a matched filter matched to the monopulse w(t).
We can define a front-end effective channel including ef-
fects from modulated pulse at the transmitter, and propa-
gation channel and matched filter at the receiver by gk,m(t) =
wm(t)�ḡk(t)�w(−t), where� denotes convolution. Consid-
ering additive white Gaussian noise (AWGN) v(t) and prop-
agation delay dk for user k, the output of the matched filter
becomes

y(t) =
∑
k,i1,m

√
Pkuk,m

(
i1
)
gk,m

(
t − i1Tc − dk

)
+ v(t). (4)

Assume each effective channel has length qσ . Then y(t) is
sampled every σ seconds to yield a discrete-time output
y(n) = y(t)|t=nσ . Using the discrete-time version of the effec-
tive channel and invoking Tc = Mσ , we obtain a pulse-rate
model

y(n) =
∑
k,m

q∑
i2=0

√
Pkuk,m

(
n− i2
M

)
gk,m

(
i2
)
+ v(n). (5)

Consider P symbol intervals of data samples with corre-
sponding time instants nMNcNf + p for p = 1, . . . ,MPNcNf

and collect them in a big vector yn of length ν = MPNcNf .
After noticing our definition of uk,m(i), a vector form data
model follows:

yn =
∑
k,m,l

Ck,lTmgksk,m(n + l) + vn, (6)

where the symbol index l takes all integers −�q/(MNcNf )	,
. . . ,P − 1, gk is an unknown channel vector for user k which
contains channel coefficients at the pulse rate and power fac-
tor
√
Pk, Tm = [0, Iq, 0]T is a tall selection matrix in order to

obtain the mth subchannel from gk (delayed in mσ seconds
or, equivalently, downshifted by m elements), and Ck,l is a
matrix constructed from corresponding c̃k(i) and is uniquely
determined by the TH sequence. It consists of only zeros and
ones, and repeats from symbol to symbol because the TH se-
quence has period equal to one symbol interval. This model
can be compactly expressed in another form

yn =
∑
k,l

Hk,lsk,n,l + vn

= Hsn + vn

(7)

after collectingM inputs in a vector

sk,n,l =
[
sk,0(n + l), . . . , sk,M−1(n + l)

]T
, (8)

defining a corresponding effective channel matrix

Hk,l =
[
Ck,lT0gk, . . . ,Ck,lTM−1gk

]
, (9)

and successively stacking such matrices (or vectors) in H (or
sn). By employing either structure of (6) or this structure,
all channels can be estimated based on a multirate subspace
concept [14].

3. SUBSPACE CHANNEL ESTIMATION AND
SYMBOL DETECTION

3.1. Zero-mean data

We denote the mean of yn as ȳ which can be easily found
from our definition of sk,n,l. Since noise has zero mean even
after the matched filter, we have

ȳ = 1
M

∑
k,m,l

Ck,lTmgk =
∑
k

Ckgk = Cg, (10)

where all channel vectors are stacked in a big vector g. Due
to nonzero mean, the autocorrelation of yn has cross-terms
gk1g

H
k2
of users k1 and k2 and is not convenient for channel es-

timation. Thus covariance is considered. Define a new zero-
mean data vector from yn as

zn = yn − ȳ =
∑
k,l

Hk,lak,n,l + vn = Han + vn, (11)

where ak,n,l = sk,n,l − (1/M)1M all of which are stacked in a
big vector an with corresponding effective channel matrix de-
fined asH. For shorter notations, we denote the information
symbol in sk,n,l simply by I after ignoring its time and user
dependence. It takes values 0, . . . ,M− 1 with equal probabil-
ity 1/M. Then

ak,n,l =
[
δ(I), . . . , δ

(
I − (M − 1)

)]T − 1
M

1TM. (12)

Denote the covariance of ak,n,l by A = E{ak,n,laTk,n,l}. Accord-
ing to the distribution of I , it can be found that

A = 1
M

M∑
i=1

ẽM,iẽTM,i, ẽM,i = eM,i − 1
M

1M. (13)

After simplification, it becomes A = (1/M)(IM −
(1/M)1M1TM) which is easily shown to have rankM − 1 since
(1/
√
M)1M is a unitary vector. Thus its eigenvalue decom-

position (EVD) has a form A = BaΛ
2
aB

H
a , where Ba is of

M× (M−1) and Λa is an (M−1)× (M−1) diagonal matrix
with all positive entries.
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3.2. Channel estimator

The ideal covariance of zn is then derived to be

R = E
{
znzHn

} =∑
k,l

Hk,lAHH
k,l + σ2v Iν. (14)

Meanwhile, ak,n,l can be whitened and correspondingly (11)
becomes

zn =
∑
k,l

Hk,lBaΛaãk,n,l + vn, (15)

where ãk,n,l has identity covariance. Assume R is decomposed
by EVD as

R =
[
Us Un

][Λs 0
0 Λn

][
UH

s

UH
n

]
, (16)

where Λs = diag{λ21, . . . , λ2ξ}, Λn = σ2v Iν−ξ , and Us and Un

represent the signal and noise subspaces, respectively. Based
on orthogonality principle,UH

n Hk,lBaΛa = 0 or, equivalently,
UH

n Hk,lBa = 0 for all possible k and l. Denoting the (i, j)th
element of Ba by bi, j , then we have

UH
n

[
Ck,lT0gk, . . . ,Ck,lTM−1gk

]
Ba = 0 (17)

which can be expanded column by column as

UH
n Dk,l, jgk = 0, j = 1, . . . ,M − 1, (18)

where Dk,l, j =
∑M

i=1 bi, jCk,lTi−1. Therefore, we can design the
following channel estimation criterion for user k by mini-
mizing total projection error

ĝk = min
∑
l, j

∥∥UH
n Dk,l, jgk

∥∥2. (19)

After defining Ok =
∑

l, j D
H
k,l, jUnUH

n Dk,l, j , (19) becomes

ĝk = min
∑
l, j

gHk Okgk. (20)

ĝk is the minimum eigenvector of Ok.

3.3. Linear receivers

In order to detect input symbol in ak,n,l which has only one
maximum while all others are smaller, we need to design M
receivers fi (i = 1, . . . ,M) with each one corresponding to
each element in ak,n,l. Then outputs of M receivers are com-
pared and the index of the maximum element is determined.
Considering I takes values 0, . . . ,M−1, our symbol detection
criterion can be described as follows:

I = arg max
i∈{1,...,M}

Re
{
fHi zn

}− 1. (21)

The receiver takes different forms for different types. We
are only interested in the MMSE receiver which is applicable
to both uplink and downlink in amultiuser environment and
has good performance in general. Consider the current sym-
bol (l = 0) and collect allM receivers in a matrix Fk for user

k. Based on (11), the DMI-MMSE receivers can be found as
follows after noticing that the covariance of ak,n,l is A:

Fk,DMI = R−1Hk,0A. (22)

The subspaceMMSE receivers can also be easily derived [15].
Since UH

n Hk,0A = 0, according to (16), we obtain

Fk,sub = UsΛ
−1
s UH

s Hk,0A. (23)

Performance of the subspace channel estimator and receivers
will be studied next.

4. PERFORMANCE ANALYSIS

It is found that both channel estimator and receivers depend
on the data covariance matrix R. In practical conditions, to-
gether with the mean of received data vector, it is often esti-
mated from N data vectors as follows:

R̂ = 1
N

N∑
n=1

(
yn − ̂̄y)(yn − ̂̄y)H, ̂̄y = 1

N

N∑
n=1

yn. (24)

The sample size N will determine the accuracy of the sub-
space estimate, thus affect the performance of the estimator.
An estimation error occurs δR = R̂ − R. For large N , it can
be regarded as a small perturbation, making the perturbation
technique applicable [17].

4.1. Channel estimation performance

For notational convenience, let Z be the noise-free data co-
variance matrix Z = R − σ2v Iν. Then perturbation of Us has
the following form [17]:

δUn ≈ −Z†δRUn. (25)

Because channel estimate is the minimum eigenvector ofOk,
δUn causes an error δOk. Then δgk has the following form
[14, 17]:

δgk ≈ −O†k δOkgk. (26)

According to our definition of Ok, δOk is given by

δOk ≈
∑
l, j

DH
k,l, j

[
δUnUH

n +UnδUH
n

]
Dk,l, j . (27)

Substituting (25) in (27) then (27) in (26), and noticing (18),
δgk is related to random matrix δR by

δgk ≈
∑
l, j

O†kD
H
k,l, jUnUH

n δRZ
†Dk,l, jgk. (28)

The covariance becomes

COV
(
δgk
) ≈ ∑

l1,l2, j1, j2

Ml1, j1E{δRYδR}MH
l2, j2 ,

Ml, j = O†kD
H
k,l, jUnUH

n ,

Y = Z†Dk,l1, j1gkg
H
k D

H
k,l2, j2Z

†.

(29)
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The channel MSE is then equal to tr(COV(δgk)). To evaluate
either of them, it suffices to determine a general-form quan-
tity

Ψ(Θ) = E{δRΘδR} (30)

for an arbitrary weighing matrix Θ. Although results for a
system with white inputs have been derived in [18], unfor-
tunately our current inputs do not satisfy that condition.
Therefore, new results need to be derived by following pro-
cedures therein. For convenience, we partition matrix H in
(11) into L subblocks as H = [H1, . . . ,HL] where each sub-
block corresponds to one symbol irrespective of user. Then
L = K(P + �q/(MNcNf )	). SOS of δR with arbitrary weigh-
ing matrix Θ are given in the following proposition.

Proposition 1. If the channel model follows (7) and the data
covariance is estimated from N independent data vectors as
(24), then for a real system (all quantities are real),

Ψ(Θ) = (N − 1)2

N3

L∑
l=1

1
M

M∑
j=1

(
h̃Tl, jΘh̃l, j

)
h̃l, j h̃Tl, j

− (N − 1)2

N3

L∑
l=1

tr
(
HlAHT

l Θ
)
HlAHT

l

− (N − 1)2

N3

L∑
l=1

HlAHT
l

(
Θ +ΘT)HlAHT

l

+
N − 1
N2

[
tr(RΘ)R + RΘTR

]
+

1
N2

RΘR

(31)

while for complex channel and noise,

Ψ(Θ) = (N − 1)2

N3

L∑
l=1

1
M

M∑
j=1

(
h̃Hl, jΘh̃l, j

)
h̃l, j h̃Hl, j

− (N − 1)2

N3

L∑
l=1

tr
(
HlAHH

l Θ
)
HlAHH

l

− (N − 1)2

N3

L∑
l=1

HlAHH
l ΘHlAHH

l

− (N − 1)2

N3

L∑
l=1

HlA
(
HH

l ΘHl
)T
AHH

l

+
N − 1
N2

[
tr(RΘ)R +HA

(
HHΘH

)T
AHH

]
+

1
N2

RΘR,

(32)

where h̃l, j = Hl ẽM, j , A = IL ⊗ A are defined for shorter nota-
tions.

For the proof of the proposition, see the appendix.
It can be observed that the above results are different

from [18] because of different distributions of inputs. Notic-
ing the fact that h̃l, j , HlA, and Z all lie in the signal sub-
space, one can verify that for either real or complex case,
(29) reduces to ((N − 1)/N2)

∑
l1,l2, j1, j2 Ml1, j1 tr{RY}RMH

l2, j2 .

Replacing Ml, j and noticing that UnUH
n RUnUH

n = σ2vUnUH
n ,

the covariance can be further simplified as

COV
(
δgk
) ≈ ( 1

N
− 1

N2

)
tr{RY}σ2v

×
∑

l1,l2, j1, j2

O†kD
H
k,l1, j1UnUH

n Dk,l2, j2O
†
k .

(33)

Clearly, the covariance of δgk or its MSE is proportional to
noise power and approximately inversely proportional to the
data length N .

4.2. Detection performance

Previously presented linear MMSE receivers are directly ap-
plied to the received data to generate estimates of entries in
ak,n,l. Then I is detected following the symbol detection crite-
rion (21). We first study performance of ideal receivers when
channel and data covariance are perfectly known. Then we
investigate its sensitivity to sample size which causes errors
in those quantities. Without loss of generality, assume user 1
is the desired user. Its information symbol I is contained in
a1,n,0 whose channel matrix is given by (9) after setting k = 1
and l = 0. That channel matrix is the first subblock in matrix
H and has been defined as H1 in Proposition 1. We only fo-
cus on a real system although we will still use H instead of T
for consistency next.

4.2.1. Ideal receivers

We will derive BER for given receivers. We separate the de-
sired signal from interference in zn:

zn = H1a1,n,0 + un, (34)

where un includes intersymbol interference (ISI) and MAI
and is approximated as a Gaussian process for convenience of
analysis. Assume information I = 0 is transmitted. Our data
vector becomes zn = h̃1,1 + un. Denote M receivers simply
by f j for j = 1, . . . ,M. It can represent any linear receiver
presented before. Then the event of right detection becomes{

fH1 zn > fHj zn, j = 2, . . . ,M
} = {∆fHj zn > 0

}
, (35)

where ∆f j = f1 − f j . Define an (M − 1)-dimensional random
vector xn = ∆FHzn, where ∆F contains all ∆f j as columns.
Since zn is assumed Gaussian distributed, xn is also Gaussian.
We can find its probability density function

fx = e−(1/2)(xn−∆FHh̃1,1)H(COV(x))−1(xn−∆FHh̃1,1)√
(2π)M−1 det

(
COV(x)

) , (36)

where COV(x) = ∆FHRint∆F is the covariance of xn with
Rint = R − h̃1,1h̃H1,1. Probability of detection error becomes
BER0 = 1 − Prob{xn > 0} = 1 − ∫ · · · ∫∞0 fx dx. It can be
numerically evaluated. Similarly, we can find the BER when
other symbols I = 1, . . . ,M − 1 are transmitted, denoted as
BER1, . . . , BERM−1. Then the average probability of error be-
comes BER = (1/M)

∑M−1
m=0 BERm.
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Due to intractability of further analysis for an arbitrary
M as evidenced by M-level integrals, we examine binary
modulation where M = 2. The BER results can be simpli-
fied as

BER0 = 1−Q

(
− ∆fH1 h̃1,1

σ1

)
= Q

(
∆fH1 h̃1,1

σ1

)
,

BER1 = 1−Q

(
− ∆fH2 h̃1,2

σ2

)
= Q

(
∆fH2 h̃1,2

σ2

)
,

(37)

where∆f2 = f2−f1 = −∆f1, and σ2j = ∆fHj (R−h̃1, j h̃H1, j)∆f j for
j = 1, 2. Since h̃1,1 = H1ẽ2,1 and H1 = [C1,0T0g1,C1,0T1g1],
it can be seen that

h̃1,1 = 1
2
C1,0

(
T0 − T1

)
g1, (38)

h̃1,2 = −h̃1,1, and σ21 = σ22 . We can conclude that BER0 =
BER1 as expected. Then BER = (1/2)(BER0+BER1) = BER0.
After examining BER0, it is found that it depends on SINR of
the receiver ∆f1. For convenience, denote ∆f1 bym. Then

SINR =
∣∣mHh̃1,1

∣∣2
σ21

= mHh̃1,1h̃H1,1m
mHRintm

. (39)

If the DMI-MMSE receiver is adopted, then according to
(22), it takes an explicit form

m1 = R−1
(
h̃1,1 − h̃1,2

) = 2R−1h̃1,1 = R−1S1g1, (40)

where S1 = C1,0(T0 − T1). If the subspace MMSE receiver is
considered as (23), it is simplified as

m2 = UsΛ
−1
s UH

s S1g1. (41)

If R is estimated from finite data by (24), then receiverm will
deviate from its optimum by δm. Detection performance will
degrade due to a change of SINR in (39) to

ŜINR ≈ mHh̃1,1h̃H1,1m + E
{
δmHh̃1,1h̃H1,1δm

}
mHRintm + E

{
δmHRintδm

} . (42)

We can easily find δm when the estimate of R produces an
error δR, then obtain corresponding statistics as discussed
next. A general form E{δmHXδm}will be evaluated and then
X is replaced by either h̃1,1h̃H1,1 or Rint.

4.2.2. Practical receivers

If R is replaced by R̂ = R + δR and g1 is estimated with error
(28), then first-order (up to δR) errors in MMSE receivers
can be found from (40) and (41). Currently, M = 2 signif-
icantly simplifies channel estimation error in (28) which re-
quiresD1,l, j and consequently Ba. Now j takes only one value
j = 1. Ba reduces to a unitary vector and can be found from
(13) to be Ba = (1/

√
2)[1,−1]T.

We focus on the DMI-MMSE receiver first. Its error is

δm1 ≈ R−1S1O
†
1

∑
l

DH
1,l,1UnUH

n δRZ
†D1,l,1g1

− R−1δRm1.

(43)

Then we obtain

E
{
δmH

1 Xδm1
}

≈mH
1 E
{
δRR−1XR−1δR

}
m1

+
∑
l1,l2

gH1 D
H
1,l1,1Z

†E
{
δRWl1,l2δR

}
Z†D1,l2,1g1

−
∑
l

mH
1 E
{
δRR−1XR−1S1O

†
1D

H
1,l,1UnUH

n δR
}
Z†D1,l,1g1

−
∑
l

gH1 D
H
1,l,1Z

†E
{
δRUnUH

n D1,l,1O
†
1S

H
1 R

−1XR−1δR
}
m1,

(44)

where

Wl1,l2 = UnUH
n D1,l1,1O

†
1S

H
1 R

−1XR−1S1O
†
1D

H
1,l2,1UnUH

n . (45)

All underlined terms can be evaluated according to Propo-
sition 1.

Similarly, the subspace MMSE receiver (41) gets per-
turbed as follows when R is estimated:

δm2 ≈ δUsΛ
−1
s UH

s S1g1 −UsΛ
−1
s δΛsΛ

−1
s UH

s S1g1

+UsΛ
−1
s δUH

s S1g1 +UsΛ
−1
s UH

s S1δg1.
(46)

Perturbation δR causes the subspace components of R to be
perturbed. The results can be found in the following lemma.

Lemma 1 (see [17]). If R is perturbed by δR, then its eigen-
components are perturbed by

δUs ≈ UnUH
n δRUsΩ

−1, δUn ≈ −Z†δRUn,

δΛs ≈ UH
s δRUs, δΛn ≈ UH

n δRUn,
(47)

where Ω = Λs − σ2v Iξ . All approximations are valid up to the
first order of δR.

Since UH
n S1g1 = 0, substituting (47) and (28) in (46), we

obtain

δm2 ≈ AnδRAγS1g1 − AsδRm2

+ AsS1O
†
1

∑
l

DH
1,l,1AnδRZ†D1,l,1g1,

(48)

where for convenience, we have defined

An
∆= UnUH

n , As
∆= UsΛ

−1
s UH

s ,

Aω
∆= UsΩ

−1UH
s , Aγ

∆= AsAω.
(49)
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Then E{δmH
2 Xδm2} will involve nine terms as follows:

E
{
δmH

2 Xδm2
}

≈ gH1 S
H
1 AγE

{
δRAnXAnδR

}
AγS1g1

− gH1 S
H
1 AγE

{
δRAnXAsδR

}
m2

+
∑
l

gH1 S
H
1 AγE

{
δRAnXAsS1O

†
1D

H
1,l,1AnδR

}
Z†D1,l,1g1

−mH
2 E
{
δRAsXAnδR

}
AγS1g1 +mH

2 E
{
δRAsXAsδR

}
m2

−
∑
l

mH
2 E
{
δRAsXAsS1O

†
1D

H
1,l,1AnδR

}
Z†D1,l,1g1

+
∑
l

gH1 D
H
1,l,1Z

†E
{
δRAnD1,l,1O

†
1S

H
1 AsXAnδR

}
AγS1g1

+
∑
l1,l2

gH1 D
H
1,l1,1Z

†E
{
δRAnD1,l1,1O

†
1S

H
1 AsXAsS1O

†
1D

H
1,l2,1AnδR

}
×Z†D1,l2,1g1

−
∑
l

gH1 D
H
1,l,1Z

†E
{
δRAnD1,l,1O

†
1S

H
1 AsXAsδR

}
m2.

(50)

Each underlined term can be obtained from Proposition 1
It is found that both (44) and (50) involve several terms.

However, most terms contribute little to the final results.
Each term follows a general form X1E{δRΘδR}X2. With re-
sults in Proposition 1, it can be easily checked that this form
will reduce to ((N−1)/N2) tr{RΘ}X1RX2 whenX1 (orX2) is
in the signal subspace andΘ is in the noise subspace, which is
smaller than that forΘ not in the noise subspace by an order
of O(σ2v ). If we omit those small terms, (44) and (50) reduce
to

E
{
δmH

1 Xδm1
} ≈mH

1 E
{
δRR−1XR−1δR

}
m1, (51)

E
{
δmH

2 Xδm2
} ≈mH

2 E
{
δRAsXAsδR

}
m2. (52)

Although they are less accurate, analytical SINRs computed
based on these truncated expressions yield very good approx-
imations to practical SINRs, as will be shown by simulation
examples next.

5. SIMULATIONS

In this section, we show the performance of the proposed
channel estimator, receivers, and also verify our analyti-
cal results by simulations. Comparison of the proposed
approach with both data-aided (DA) and non-data-aided
(NDA) methods described in [10] are included.

5.1. Performance of the proposed approach

We consider a UWB system withNc = 8,Nf = 4, andM = 2.
If not stated otherwise, 8 equal-powered users are assumed
in the system. Gaussian channel with maximum delay spread
over one frame is considered [10, 13], which is equivalent to
16-path channel after sampling according to our data model.
Each user’s TH codes and channel are randomly generated
once and fixed for all realizations. The received signal is the
second derivative of the Gaussian function with pulse width

100
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5 10 15 20 25 30 35 40 45 50

Data length (N) ×102

M
SE

Experimental
Analytical

Figure 1: MSE versus N .

equal to 0.7 nanosecond [4]. Simulation results are based on
100 independent realizations. User 1 is assumed to be the de-
sired user, and the receiver is assumed to be synchronized to
the desired user. In the following different cases, we demon-
strate the performance of the proposed method in various
simulation situations involving different finite data lengthN ,
various input Eb/N0, variable number of active users, and dif-
ferent interfering users’ power. In Cases 3 and 4, the RAKE
receiver, which is constructed based on the proposed chan-
nel estimate, is also presented for comparison.

Case (1). Effect of N , Eb/N0 = 15 dB. Effect of N on both
channel estimation MSE and receivers’ output SINR is in-
vestigated. Comparison between the experimental and ana-
lytical results is also presented. Figure 1 shows the channel’s
MSE, which decreases as N increases. Meanwhile, the exper-
imental MSE curve is seen to converge to its analytical one
(dotted line) for large N , validating our MSE analysis. The
receivers’ output SINR is demonstrated in Figure 2. It is ob-
served that the output SINR of the subspace MMSE receiver
converges to its analytical value very well from N = 100.
Moreover, the truncated analytical SINR computed based on
(52) is seen to be very consistent with the analytical one with-
out truncation. On the other hand, the output SINR of the
DMI-MMSE receiver converges slowly to its analytical SINR
and truncated approximation, which implies that more data
samples are needed for the DMI-MMSE to achieve satisfac-
tory performance.

Case (2). Effect of Eb/N0. Figures 3a and 3b illustrate BER
performance of the subspace and DMI-MMSE receivers, re-
spectively. Data lengthsN = 800 andN = 3000 are both con-
sidered. The analytical BERs are calculated according to our
previous analysis. The ideal receivers are constructed accord-
ing to (22) and (23) using perfect codes and channel infor-
mation of all users as well as noise power. It is observed that
the BER of the subspace MMSE receiver with N = 3000 is
very consistent with its analytical counterpart, and also very
close to the BER of the ideal subspace receiver at each Eb/N0
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Figure 2: Output SINR versus N .

examined. The subspace receiver with N = 800 shows a little
degradation. Similar results can be observed for the DMI-
MMSE receiver at low Eb/N0. However, at high Eb/N0, the
DMI receiver with either N = 800 or N = 3000 shows di-
verged BER from either the analytical or ideal value, due to
large perturbation of the receiver incurred by the inverse of
the estimated covariance matrix. Figure 3b implies that more
data samples are required for the DMI-MMSE receiver to
reach its analytical limit at higher Eb/N0.

Case (3). Near-far effect, Eb/N0 = 15 dB. Each interfering
user is assumed to have power from 0 dB to 10 dB higher than
the desired user. Corresponding BER is plotted in Figure 4.
It is observed that the BER performance of all receivers de-
grades a little as the interfering users’ power increases. How-
ever, the subspace receiver can still achieve a satisfactory per-
formance of 2 × 10−4 even in the presence of the maximum
interfering power examined.

Case (4). Effect of number of users, Eb/N0 = 15 dB.
The performance of the proposed method is investigated for
a UWB system with different number of active users. Ac-
cording to Figure 5, although BER degrades for all three re-
ceivers as the number of users increases, the subspace MMSE
receiver still has satisfactory performance for the cases of
K < 10, and has an acceptable BER performance of 7× 10−3

in the case of K = 14. Clearly, with the aid of the proposed
multiuser detection scheme, more than Nc users can be sup-
ported by the system with satisfactory performance.

5.2. Comparisonwith other approaches

Since [10] also considers channel estimation, comparison
with [10] is thus conducted and presented in this subsec-
tion. The data-aided and nondata-aided methods in [10]
are termed as DA and NDA, respectively, and their RAKE
receivers with one finger and three fingers are named as
RAKE-1 and RAKE-3, correspondingly. For comparison, the
proposed subspace MMSE receiver and RAKE receiver con-
structed from estimated channel vector are presented.

The system parameters are taken as Nc = 20, Nf = 2.
Each three-path channel is generated by following [10] ex-
actly. Eight hundred symbols are used for channel estima-
tion. Instead of plotting delay and gain estimates separately
as in [10], we integrate delays and gains of the desired user’s
channel into a channel vector by associating each of its el-
ements with the gain of the path at a particular delay and
filling zeros correspondingly if there is no path. The normal-
ized channel MSE for the integrated channel is then plotted
in Figures 6a, 6b, and 6c for the cases of K = 1, K = 5 and
K = 10, respectively. In the case of K = 1, DA shows the
best performance at low Eb/N0 at the cost of using training
data. In that case, DA is close to the optimal receiver due
to absence of MUI and negligible ISI compared with noise
power. However, at high Eb/N0 where ISI is dominant, the
proposed method, though without the aid of training data,
still outperforms the training-based DA and the blind NDA
methods greatly. For the case of K = 5 or K = 10, due
to significant MUI, the proposed method outperforms DA
significantly for most Eb/N0 examined, and is clearly supe-
rior to NDA for all Eb/N0 examined. The BER performance
of different receivers is demonstrated in Figures 7a, 7b, and
7c for different users and Eb/N0, respectively. In the case of
one user, the proposed subspace MMSE and RAKE receivers
have very similar performance to the RAKE-3 receiver of DA,
while the subspace receiver shows better performance at high
Eb/N0. In the case of five users and ten users, the proposed
subspace receiver shows the best performance. The proposed
RAKE receiver also shows better performance than either DA
or NDA method due to better channel estimation for those
cases. In summary, the proposed method explicitly consid-
ers MAI, and thus achieves better performance than both DA
and NDA approaches in [10].

6. CONCLUSION

In this paper, we have proposed a blind subspace channel es-
timator for UWB communication systems employing PPM
modulation. Two MMSE receivers known as subspace and
DMI-MMSE receivers are designed based on estimated chan-
nel for symbol detection. Asymptotic performance of both
the channel estimator and receivers is derived based on per-
turbation theory. Extensive simulation results show satisfac-
tory performance of the proposed scheme in various com-
munication scenarios.1

APPENDIX

PROOF OF PROPOSITION 1

Theweighted covarianceΨ(Θ) depends on δR = R̂−Rwhich
in turn depends on R̂ by (24). We thus first relate R̂ to yn and
then zn which shows explicit dependence of system parame-
ters.

1The views and conclusions contained in this document are those of the
authors and should not be interpreted as representing the official policies,
either expressed or implied, of the Army Research Laboratory or the US
Government.
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Figure 3: BER versus Eb/N0: (a) subspace and (b) DMI.
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After expanding summation in (24), we obtain

R̂ = 1
N

∑
n

ynyHn −
1
N2

∑
n1,n2

yn1y
H
n2 . (A.1)

After substituting yn by zn+ ȳ according to (11), (A.1) can be
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Figure 5: BER versus number of users.

simplified as

R̂ = 1
N

∑
n

znzHn −
1
N2

∑
n1,n2

zn1z
H
n2 . (A.2)

It can be observed that (A.2) is consistent with a typical
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Figure 6: Channel MSE of different methods: (a) one user, (b) five
users, and (c) ten users.
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Figure 7: BER of different receivers: (a) one user, (b) five users, and
(c) ten users.
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covariance estimator

R̂ = 1
N

∑
n

(
zn − ̂̄z)(zn − ̂̄z)H, ̂̄z = 1

N

∑
n

zn (A.3)

although we estimate R directly from yn as (24). Due to zero
mean and independence assumption on zn at different times,
the mean of R̂ is found to be E{R̂} = (1− 1/N)R from (A.2).
ThenΨ(Θ) can be expanded into

Ψ(Θ) = E
{(
R̂− R

)
Θ
(
R̂− R

)}
= E

{
R̂ΘR̂

}− (1− 2
N

)
RΘR.

(A.4)

It thus suffices to derive E{R̂ΘR̂H} for further simplification
ofΨ(Θ).

For convenience, rewrite (A.2) as

R̂ = N − 1
N2

∑
n

znzHn −
1
N2

∑
n1 �=n2

zn1z
H
n2 . (A.5)

Then from (A.5) and using zero-mean property of zn, we ob-
tain

E
{
R̂ΘR̂

} = (N − 1
N2

)2 ∑
n1,n2

E
{
zn1z

H
n1Θzn2z

H
n2

}
+

1
N4

∑
n1 �=n2
n3 �=n4

E
{
zn1z

H
n2Θzn3z

H
n4

}
.

(A.6)

The term
∑

n1,n2 E{zn1zHn1Θzn2z
H
n2} becomes NE{znzHn ΘznzHn }

+ (N2 −N)RΘR. In the second term, there are only two dif-
ferent cases which give nonzero contributions because of zero
mean of zn and independence assumption: n2 = n3, n1 = n4
but n1 �= n2; n2 = n4, n1 = n3 but n1 �= n2. They correspond-
ingly yield(
N2−N) tr(RΘ)R+

(
N2−N)E{znzTn}ΘT(E{znzTn})∗. (A.7)

Therefore, (A.6) becomes

E
{
R̂ΘR̂

} = (N − 1)2

N3
E
{
znzHn ΘznzHn

}
+
(N − 1)3

N3
RΘR +

N − 1
N3

tr(RΘ)R

+
N − 1
N3

E
{
znzTn

}
ΘT(E{znzTn})∗.

(A.8)

Consequently, (A.4) becomes

Ψ(Θ) = (N − 1)2

N3

[
E
{
znzHn ΘznzHn

}− RΘR
]

+
1
N2

RΘR +
N − 1
N3

tr(RΘ)R

+
N − 1
N3

E
{
znzTn

}
ΘT(E{znzTn})∗.

(A.9)

In order to complete simplification of (A.9), E{znzHn ΘznzHn }
and E{znzTn} are needed which will be derived next. We con-
sider real and complex systems separately.

A.1. Real system

According to (11), we have

znzTn = HanaTnH
T +HanvTn + vnaTnH

T + vnvTn ,

zTnΘzn = aTnH
TΘHan + aTnH

TΘvn + vTnΘHan + vTnΘvn.
(A.10)

Then considering zero mean of an and vn, we obtain

E
{
znzTnΘznzTn

}
= E

{
HanaTnH

TΘHanaTnH
T} + E

{
HanaTnH

TvTnΘvn
}

+ E
{
HanaTnH

TΘvnvTn
}
+ E
{
HanaTnH

TΘTvnvTn
}

+ E
{
vnvTnΘ

THanaTnH
T} + E

{
vnvTnΘHanaTnH

T}
+ E
{
vnvTna

T
nH

TΘHan
}
+ E
{
vnvTnΘvnvTn

}
= E

{
HanaTnH

TΘHanaTnH
T} + σ2v tr(Θ)HAHT

+ σ2vHAHTΘ + σ2vHAHTΘT + σ2vΘ
THAHT

+ σ2vΘHAHT + σ2v tr
(
AHTΘH

)
Iν

+ E
{
vnvTnΘvnvTn

}
.

(A.11)

Using R = HAHT + σ2v Iν, we obtain

RΘR = HAHTΘHAHT + σ2vHAHTΘ

+ σ2vΘHAHT + σ4vΘ.
(A.12)

Then we obtain

E
{
znzTnΘznzTn

}− RΘR

= E
{
HanaTnH

TΘHanaTnH
T} + σ2v tr(Θ)HAHT

+ σ2vHAHTΘT + σ2vΘ
THAHT + σ2v tr

(
AHTΘH

)
Iν

+ E
{
vnvTnΘvnvTn

}−HAHTΘHAHT − σ4vΘ.
(A.13)

The first term can be simplified according to distribution
of input. Express Han by

∑L
l=1Hlan,l where E{an,laTn,l} = A.

Then we obtain

E
{
HanaTnH

TΘHanaTnH
T}

=
∑

l1,l2,l3,l4

E
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Hl1an,l1a

T
n,l2H

T
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=
∑
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E
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T
l
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T
l ΘHlan,l

)}
+
∑
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Hl1AH
T
l1
tr
(
AHT

l2
ΘHl2

)
+
∑
l1,l2

Hl1AH
T
l1
ΘHl2AH

T
l2

+
∑
l1,l2

Hl1AH
T
l1
ΘTHl2AH

T
l2

−
∑
l

[
HlAHT

l tr
(
AHT

l ΘHl
)
+HlAHT

l

(
Θ+ΘT)HlAHT

l

]
=
∑
l

E
{
Hlan,laTn,lH

T
l

(
aTn,lH

T
l ΘHlan,l

)}
−
∑
l

[
HlAHT

l tr
(
AHT

l ΘHl
)
+HlAHT

l

(
Θ+ΘT)HlAHT

l

]
+HAHT tr

(
HAHTΘ

)
+HAHT(Θ +ΘT)HAHT.

(A.14)
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Also according to [18, equation (13)], the following holds for
real AWGN:

E
{
vnvTnΘvnvTn

} = σ4v tr(Θ)Iν + σ4v
(
Θ +ΘT). (A.15)

Substituting (A.14) and (A.15) into (A.13), using R =
HAHT + σ2v Iν, and considering that an,l takesM possible val-
ues with probability 1/M, we obtain

E
{
znzTnΘznzTn

}− RΘR

=
L∑
l=1

1
M

M∑
j=1

(
h̃Hl, jΘh̃l, j

)
h̃l, j h̃Hl, j + tr(RΘ)R + RΘTR

−
∑
l

[
HlAHT

l tr
(
AHT

l ΘHl
)
+HlAHT

l

(
Θ+ΘT)HlAHT

l

]
.

(A.16)

Considering R = E{znzTn} and substituting (A.16) into (A.9),
we obtain (31).

A.2. Complex system

We will follow similar procedures as before. According to
(11), we have

znzHn = HanaHn H
H +HanvHn + vnaHn H

H + vnvHn ,

zHn Θzn = aHn H
HΘHan + aHn H

HΘvn + vHn ΘHan + vHn Θvn.
(A.17)

From these two equations and since vn has zero-mean circu-
larly symmetric Gaussian entries, we obtain

E
{
znzHn ΘznzHn

}
= E

{
HanaHn H

HΘHanaHn H
H} + E

{
HanaHn H

HvHn Θvn
}

+ E
{
HanaHn H

HΘvnvHn
}
+ E
{
vnvHn ΘHanaHn H

H}
+ E
{
vnvHn a

H
n H

HΘHan
}
+ E
{
vnvHn ΘvnvHn

}
= E

{
HanaHn H

HΘHanaHn H
H} + σ2v tr(Θ)HAHH

+ σ2vHAHHΘ + σ2vΘHAHH + σ2v tr
(
AHHΘH

)
Iν

+ E
{
vnvHn ΘvnvHn

}
.

(A.18)

Using (A.12), we have

E
{
znzHn ΘznzHn

}− RΘR

= E
{
HanaHn H

HΘHanaHn H
H} + σ2v tr(Θ)HAHH

+ σ2v tr
(
AHHΘH

)
Iν + E

{
vnvHn ΘvnvHn

}
−HAHHΘHAHH − σ4vΘ.

(A.19)

The first term can be similarly obtained as (A.14) after notic-
ing that an,l is a real vector by

E
{
HanaHn H

HΘHanaHn H
H}

=
∑
l

E
{
Hlan,laHn,lH

H
l

(
aHn,lH

H
l ΘHlan,l

)}
−
∑
l

[
HlAHH

l tr
(
AHH

l ΘHl
)
+HlAHH

l ΘHlAHH
l

]
−
∑
l

HlAHT
l Θ

TH∗
l AH

H
l +HAHH tr

(
HAHHΘ

)
+HAHHΘHAHH +HAHTΘTH∗AHH.

(A.20)

According to [18, equation (20)], the following holds for
complex symmetric AWGN:

E
{
vnvHn ΘvnvHn

} = σ4v tr(Θ)Iν + σ4vΘ. (A.21)

Substituting (A.20) and (A.21) into (A.19), using R =
HAHH +σ2v Iν, and considering that an,l takesM possible val-
ues with probability 1/M, we obtain

E
{
znzHn ΘznzHn

}− RΘR

=
L∑
l=1

1
M

M∑
j=1

(
h̃Hl, jΘh̃l, j

)
h̃l, j h̃Hl, j

−
∑
l

[
HlAHH

l tr
(
AHH

l ΘHl
)
+HlAHH

l ΘHlAHH
l

]
−
∑
l

HlAHT
l Θ

TH∗
l AH

H
l

+ tr(RΘ)R +HAHTΘTH∗AHH.
(A.22)

Noticing

E
{
znzTn

} = HAHT,
(
E
{
znzTn

})∗ = H∗AHH, (A.23)

and substituting (A.22) into (A.9), we obtain (32).

ACKNOWLEDGMENTS

This work was prepared through collaborative participation
in the Communications and Networks Consortium spon-
sored by the US Army Research Laboratory under the Col-
laborative Technology Alliance Program, Cooperative Agree-
ment DAAD19-01-2-0011. The US Government is autho-
rized to reproduce and distribute reprints for Government
purposes notwithstanding any copyright notation thereon.
This paper was presented in part at the IEEE Topical Con-
ference on Wireless Communication Technology, Hawaii,
October 2003, and the IEEE UWBST Conference, Virginia,
November 2003.



Subspace Multiuser Detection for Ultra-Wideband Systems 425

REFERENCES

[1] H. F. Harmuth, Transmission of Information by Orthogonal
Functions, Springer-Verlag, New York, NY, USA, 1969.

[2] C. L. Bennett and G. F. Ross, “Time-domain electromagnetics
and its applications,” Proc. IEEE, vol. 66, no. 3, pp. 299–318,
1978.

[3] R. A. Scholtz, “Multiple access with time-hopping impulse
modulation,” in Proc. IEEE Military Communications Confer-
ence (MILCOM ’93), pp. 447–450, Boston, Mass, USA, Octo-
ber 1993.

[4] M. Z. Win and R. A. Scholtz, “Impulse radio: how it works,”
IEEE Commun. Lett., vol. 2, no. 2, pp. 36–38, 1998.

[5] Federal Communications Commission (FCC), “Revision of
part 15 of the commission’s rules regarding ultra-wideband
transmission systems,” First Report and Order, ET Docket
98-153, FCC 02–48, Adopted: February 2002; Released: April
2002.

[6] R. Fontana, A. Ameti, E. Richley, L. Beard, and D. Guy, “Re-
cent advances in ultra wideband communications systems,” in
Proc. IEEE Conference on Ultra Wideband Systems and Tech-
nologies (UWBST ’02), pp. 129–133, Baltimore, Md, USA,
May 2002.

[7] M. Z. Win and R. A. Scholtz, “Characterization of ultra-
wide bandwidth wireless indoor channels: a communication-
theoretic view,” IEEE J. Select. Areas Commun., vol. 20, no. 9,
pp. 1613–1627, 2002.

[8] D. Porcino and W. Hirt, “Ultra-wideband radio technology:
potential and challenges ahead,” IEEE Commun. Mag., vol. 41,
no. 7, pp. 66–74, 2003.

[9] M. Z. Win and R. A. Scholtz, “Ultra-wide bandwidth
time-hopping spread-spectrum impulse radio for wireless
multiple-access communications,” IEEE Trans. Commun., vol.
48, no. 4, pp. 679–689, 2000.

[10] V. Lottici, A. D’Andrea, and U. Mengali, “Channel estima-
tion for ultra-wideband communications,” IEEE J. Select. Ar-
eas Commun., vol. 20, no. 9, pp. 1638–1645, 2002.

[11] C. J. Le Martret and G. B. Giannakis, “All-digital impulse
radio with multiuser detection for wireless cellular systems,”
IEEE Trans. Commun., vol. 50, no. 9, pp. 1440–1450, 2002.

[12] L. Yang, Z. Tian, and G. B. Giannakis, “Non-data aided tim-
ing acquisition of ultra-wideband transmissions using cyclo-
stationarity,” in Proc. IEEE International Conference on Acous-
tics, Speech, and Signal Processing (ICASSP ’03), pp. 121–124,
Hong Kong, April 2003.

[13] L. Yang and G. B. Giannakis, “Multistage block-spreading for
impulse radio multiple access through ISI channels,” IEEE J.
Select. Areas Commun., vol. 20, no. 9, pp. 1767–1777, 2002.

[14] Z. Xu, “Asymptotic performance of subspace methods for
synchronous multirate CDMA systems,” IEEE Trans. Signal
Processing, vol. 50, no. 8, pp. 2015–2026, 2002.

[15] X. Wang and H. Poor, “Blind equalization and multiuser de-
tection in dispersive CDMA channels,” IEEE Trans. Commun.,
vol. 46, no. 1, pp. 91–103, 1998.

[16] P. Lancaster and M. Tismenetsky, The Theory of Matrices with
Applications, Academic Press, San Diego, Calif, USA, 2nd edi-
tion, 1985.

[17] Z. Xu, “Perturbation analysis for subspace decomposition
with applications in subspace-based algorithms,” IEEE Trans.
Signal Processing, vol. 50, no. 11, pp. 2820–2830, 2002.

[18] Z. Xu, “On the second-order statistics of the weighted sample
covariance matrix,” IEEE Trans. Signal Processing, vol. 51, no.
2, pp. 527–534, 2003.

Zhengyuan Xu received both the B.S. and
M.S. degrees in electronic engineering from
Tsinghua University, Beijing, China, in 1989
and 1991, respectively, and the Ph.D. degree
in electrical engineering from Stevens Insti-
tute of Technology, Hoboken, NJ, USA, in
1999. From 1991 to 1996, he worked as an
Engineer and Department Manager at the
Tsinghua Unisplendour Group Corp., Ts-
inghua University. Since 1999, he has been
with the Department of Electrical Engineering, University of Cali-
fornia, Riverside, as an Assistant Professor. His current research in-
terests include detection and estimation theory, spread-spectrum
and ultra-wideband wireless technology, multiuser communica-
tions, and ad hoc and wireless sensor networking. Dr. Xu re-
ceived the Outstanding Student Award and the Motorola Scholar-
ship from Tsinghua University, and the Peskin Award from Stevens
Institute of Technology. He also received the Academic Senate Re-
search Award and the Regents’ Faculty Award from University of
California, Riverside. He has served as a Session Chair and Tech-
nical Program Committee Member for international conferences.
He is an IEEE Senior Member, a Member of the IEEE Signal Pro-
cessing Society’s Technical Committee on Signal Processing for
Communications, and an Associate Editor for the IEEE Transac-
tions on Vehicular Technology and the IEEE Communications Let-
ters.

Ping Liu received the B.S. and M.S. degrees
in electronic engineering from Sichuan
University, Chendu, China, in 1990 and
1993, respectively, the M.Eng. degree in
electrical and electronic engineering from
Nanyang Technological University, Singa-
pore, in 1999, and the Ph.D. degree in elec-
trical engineering from the University of
California, Riverside, in 2004. From April
1999 to August 1999, she worked as a Re-
search Engineer with Kent Ridge Digital Labs, Singapore. Since Au-
gust 2004, she has been an Assistant Professor with the Depart-
ment of Electrical Engineering, Arkansas Tech University, Russel-
lville, Ark. Her current research interests are in the general area
of wireless communications, space-time coding, digital signal pro-
cessing, and blind system identification.

Jin Tang received the B.S. degree in electri-
cal engineering and business administration
from Beijing University of Aeronautics and
Astronautics in 1995 and the M.S. degree
in electrical engineering from the Univer-
sity of California, Riverside, in 2003. He is
now a Ph.D. candidate in the Electrical En-
gineering Department, University of Cali-
fornia, Riverside. His research interests in-
clude channel estimation and receiver de-
sign for ultra-wideband communication systems.


	1. INTRODUCTION
	2. DISCRETE-TIME UWB SYSTEM
	3. SUBSPACE CHANNEL ESTIMATION AND SYMBOL DETECTION
	3.1. Zero-mean data
	3.2. Channel estimator
	3.3. Linear receivers

	4. PERFORMANCE ANALYSIS
	4.1. Channel estimation performance
	4.2. Detection performance
	4.2.1. Ideal receivers
	4.2.2. Practical receivers


	5. SIMULATIONS
	5.1. Performance of the proposed approach
	5.2. Comparison with other approaches

	6. CONCLUSION
	APPENDIX
	PROOF OF PROPOSITION 1
	A.1. Real system
	A.2. Complex system

	ACKNOWLEDGMENTS
	REFERENCES

